PILOT-SCALE HYDROTHERMAL PRETREATMENT AND OPTIMIZED SACCHARIFICATION ENABLES BISABOLENE PRODUCTION FROM MULTIPLE FEEDSTOCKS

José A. Pérez-Pimienta^{a,b,*}, Gabriella Papa^c, Alberto Rodriguez^{c,d}, Carolina A. Barcelos^c, Ling Liang^e, Vitalie Stavila^f, Arturo Sanchez^a, John M. Gladden^{c,d}, Blake A. Simmons^c

a Laboratorio de Futuros en Bioenergía, Unidad Guadalajara de Ingeniería Avanzada,

Centro de Investigación y Estudios Avanzados (CINVESTAV), Zapopan, Mexico

^b Department of Chemical Engineering, Universidad Autónoma de Nayarit, Tepic, Mexico

^c Joint BioEnergy Institute, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Emeryville, CA, United States

^d Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA, United States

Advanced Biofuels Process Demonstration Unit, Lawrence Berkeley National Laboratory,
Berkeley, CA, United States

^f Energy Nanomaterials Department, Sandia National Laboratories, Livermore, CA, United States

*Corresponding author E-mail address: japerez@uan.edu.mx Telephone: 52-311-2118821

List of tables

#	Title
S1	Aromatic compounds detected in the untreated and PSR pretreated biomass using Py-GC/MS.
S2	Variables and responses of the experimental design matrix of the reduced response surface model for the saccharification of PSR pretreated biomass.
S 3	Pearson's correlation coefficient (r) between % xylan and % lignin content from S/G ratio, % crystallinity index (CrI), "ash free" energy density (EDa) and molecular weight (MW) from untreated and pretreated biomass.
S 4	Pearson's correlation coefficient (r) between % glucose conversion and % xylan, % crystallinity index (CrI), S/G ratio, "ash free" energy density (EDa) and molecular weight (MW) from untreated and pretreated biomass.

Num	Compound	Chemical formula	Retention time	Molecular weight	S_L^*
1	guaiacol/mequinol/2-methoxyphenol	C ₇ H ₈ O ₂	4.05	124	G
2	4-vinyl phenol (shows 2,3-dihydro benzofuran)-coumaran	C ₈ H ₈ O	7.65	120	Н
3	p-ethylguaiacol (4-ethyl-2methoxy phenol)	CH ₁₂ O ₃	9.42,10.19	152	G
4	4-vinylguaiacol (2-methoxy-4 vinyl phenol)	$C_9H_{10}O_2$	11.08, 11.7	150	G
5	2,6-dimethoxy phenol/syringol	$C_8H_{10}O_3$	12.8	154	S
6	Phenol, 2 methoxy-5-(2propenyl) 3-allyl-6-methoxyphenol	$C_{10}H_{12}02$	12.95	164	G
7	isovanillin/p-arisaldehyde	C ₈ H ₈ O ₃	13.70, 14.15	152	G
8	Phenol 2, methoxy-5 (1 propenyl)	$C_{10}H_1I_{22}$	14.23	164	G
9	4-methoxy-3-methoxymethyl phenol	$C_9H_{12}O_3$	15.03	168	G
10	2-methoxy-5-(1-propenyl)-phenol (E)	$C_{10}H_{12}O_2$	15.17	164	G
11	vanillic acid	C ₈ H ₈ O ₄	15.06	168	G
12	4-propenyl guaiacol (2-methoxy-4-propenyl phenol) isoeugenol	$C_{10}H_{12}O_2$	15.19	164	G
13	2-methoxy-4-methyl phenol (creosol)	$C_8H_{10}O_2$	6.27	137	G
14	4 hydroxy-3-methoxyphenylpropane, 2, methoxy-4 propyl phenol	$C_{10}H_{14}O_4$	13.23, 15.31	166	G
15	Phenol, 4-(3-hydroxy-1propenyl-2methoxy)	C ₁₀ H ₁₂ O ₃	16.58, 17.33	180	G
16	3-tert-butyl-4-hydroxyarisole	$C_{11}H_{16}O_2$	17.12	180	G
17	phenol, 2,6 dimethoxy-4-(2-propenyl) (4-allyl-2,6-dimethoxy phenol)	$C_{11}H_{14}O_3$	19.03	194	S
18	phenol, 2,6 dimethoxy-4-(2-propenyl) (4-allyl-2,6-dimethoxy phenol)	$C_{11}H_{14}O_3$	17.31, 17.64, 18.01, 18.72, 19.03	194	S
19	phenol, 2,6 dimethoxy-4-(2-propenyl) (4-allyl-2,6-dimethoxy phenol)	C ₁₁ H ₁₄ O ₃	17.64	194	S
20	phenol, 2,6 dimethoxy-4-(2-propenyl) (4-allyl-2,6-dimethoxy phenol)	C ₁₁ H ₁₄ O ₃	18.33	194	S
21	4-hydroxy-3,5-dimethoxy benzaldehyde (galladehyde)	C ₉ H ₁₀ O ₄	18.52	182	S
22	acetosyringone (4-hydroxy-3,5-dimethoxy acetophenone)	C ₁₀ H ₁₂ O ₄	19.46	196	S

Table S1. Aromatic compounds detected in the untreated and PSR pretreated biomass using Py-GC/MS.

 $S_L = Lignin subunits, p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S).$

Factor 1	Factor 2	Factor 3	Glucose conversion (%)			
A: Temperature	B: pH	C: Enzyme loading (mg /g glucan)	Agave bagasse	Corn stover	Sugarcane bagasse	Wheat straw
45.0	5.25	27.5	50.1	72.2	49.6	49.6
48.0	5.7	40.9	66.9	60.9	50.8	50.8
48.0	4.8	14.1	44.2	73.1	36.8	36.75
48.0	5.7	14.1	51.4	71.8	40.0	40.0
48.0	4.8	40.9	60.9	63.5	49.5	49.5
52.5	5.25	4.96	40.2	59.9	27.7	27.7
52.5	5.25	27.5	74.4	53.3	51.2	51.2
52.5	4.50	27.5	54.0	72.2	49.1	49.1
52.5	5.25	27.5	69.5	73.8	50.5	50.5
52.5	5.25	27.5	70.3	75.0	49.4	49.4
52.5	5.25	27.5	66.9	74.7	47.7	47.9
52.5	5.25	50.0	76.1	72.2	83.7	83.7
52.5	5.25	27.5	66.9	69.7	45.5	45.5
52.5	5.25	27.5	62.6	69.0	49.2	49.2
52.5	6.0	27.5	56.9	60.6	48.9	48.9
57.0	4.8	14.1	31.8	46.3	29.5	29.5
57.0	5.7	14.1	33.6	57.8	26.8	26.8
57.0	4.8	40.9	55.2	46.7	38.3	38.3
57.0	5.7	40.9	54.4	57.1	42.2	42.2
60.0	5.25	27.5	44.3	52.5	33.7	33.7

Table S2. Variables and responses of the experimental design matrix of the reduced response surface model for the saccharification ofPSR pretreated biomass.

Table S3. Pearson's correlation coefficient (r) between % xylan and % lignin content from S/G ratio, crystallinity index (CrI), "ash free" energy density (EDa) and molecular weight (MW) from untreated and pretreated biomass.

	S/G ratio	CrI	EDa	MW
Xylan (%)	-0.641	-0.197	-0.676	-0.878**
Lignin (%)	0.440	0.405	0.811*	0.899**

* and ** indicate significant differences at P < 0.05 and 0.01, respectively.

Table S4. Pearson's correlation coefficient (r) between % glucose conversion and % xylan, crystallinity index (CrI), S/G ratio, "ash free" energy density (EDa) and molecular weight (MW) from untreated and pretreated biomass.

	% Xylan	CrI	S/G ratio	EDa	MW
% Glucose	-0.726*	0.459	0.226	0.674	0.936**
conversion					

* and ** indicate significant differences at *P*< 0.05 and 0.01, respectively.

List of figures

#	Title
S1	X-ray diffraction patterns of untreated and PSR pretreated biomass.
S2	Relative abundance (%) of the main aromatic components detected by Py-GC/MS of untreated (U) and pretreated (P) biomass.
S3	Molecular weight distribution obtained by gel permeation chromatography (GPC) of untreated (U) and pretreated biomass (P).
S 4	Release of glucose and xylose during 120-hour saccharification by applying a pulse-feeding strategy from 20 to 35% solids (top), sugar consumption and bisabolene production by fermentation with <i>Rhodosporidium toruloides</i> using the pulse-feeding hydrolysate from pretreated WS (bottom).

Figure S2. Relative abundance (%) of the main aromatic components detected by Py-GC/MS of untreated (U) and pretreated (P) agave bagasse(AG), corn stover (CS), sugarcane bagasse (SC), and wheat straw (WS). *Letters in parentheses correspond to lignin subunits as *p*-hydroxyphenyl (H), guaiacyl (G) and syringyl (S).

Figure S4. Release of glucose and xylose during 120-hour saccharification by applying a pulse-feeding strategy from 20 to 35% solids (top), sugar consumption and bisabolene production by fermentation with *Rhodosporidium toruloides* using the pulse-feeding hydrolysate from pretreated WS (bottom).