Supplementary Infromation

Selective hydrodeoxygenation of lignin oil to valuable phenolics over Au/Nb₂O₅ in water

Lin Dong a, Yu Xin a, Xiaohui Liu a*, Yong Guo a and Yanqin Wang a*, Chih-Wen Paob,

Jeng-Lung Chen^b

^aShanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial

Catalysis, School of Chemistry and Molecular Engineering, East China University of Science

and Technology, Shanghai, 200237, (P.R. China)

^bNational Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

E-mail: xhliu@ecust.edu.cn; wangyanqin@ecust.edu.cn

Table of contents

Ι.	Figures	2
Π.	Tables	.4
Ⅲ.	Experimental procedures	6

I. Figures

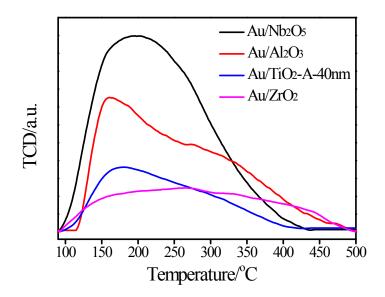
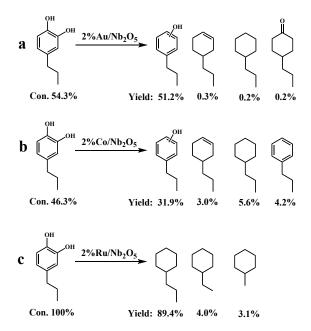



Fig. S1 NH₃-TPD profiles of Au/Nb₂O₅, Au/Al₂O₃, Au/TiO₂-A-40nm and Au/ZrO₂.

Fig. S2 Reaction results for the hydrodeoxygenation of 4-propylcatechol over different Au-based catalysts in a batch reactor. Reaction condition: 4-propylcatechol (0.5 g), catalyst (0.2 g), deionized water (10 mL), 300 °C, 2 h and initial H_2 pressure of 6.5 MPa.

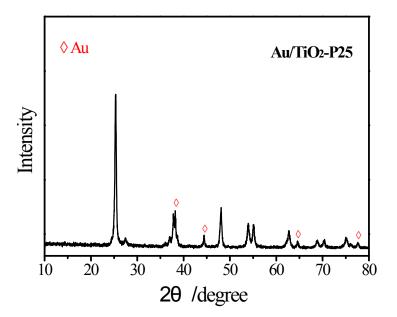
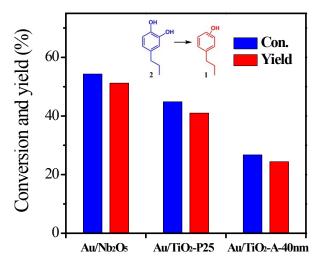



Fig. S3. XRD patterns of Au/TiO₂-P25.

Fig. S4 Reaction results for the hydrodeoxygenation of 4-propylcatechol over different Au-based catalysts in a batch reactor. Reaction condition: 2-methoxy-4-propylphenol (0.5 g), catalyst (0.2 g), deionized water (10 mL), 300 °C, 2h and initial H_2 pressure of 6.5MPa.

II. Tables

Entry	Lignin oil	Component (wt %)					Total	
		H ₃ CO	H ₃ CO OH OCH ₃	H ₃ CO OH OCH ₃	OH OCH3	OH OCH ₃	OH OCH3	(wt %)
1	beech	54.5	0.7	0.5	18.3	0.4	0.4	74.8
2	birch	45.6	2.0	0.7	17.6	1.2	0.4	67.4
3	pine	35.4	1.6	0.5	35.6	1.2	0.6	74.9
4	cornstalk	23.1	3.7	0.7	21.9	1.7	0.8	52.0

 Table S1. The component of various lignin oils.

The other components of lignin oil are polyhydric alcohols.

Table S2. Summary of ph	rysicochemical	properties and ICP anal	ysis results of Au/TiO ₂ -P25.
-------------------------	----------------	-------------------------	---

Catalust	Surface area	Pore volume	Pore size	Au loading ^a
Catalyst	(m ² g ⁻¹)	(cm^3g^{-1})	(nm)	(wt%)
Au/TiO ₂ -P25	21	0.207	17.4	2.0

^a Determined by ICP-AES.

Table S3. Results	of full conver	rsion of variou	is types of	lignocellulose

Lignocellulo	ose	beech	birch	pine	cornstalk
Lignin oil (n	ng) ^a	98	152	100	84
Monomer yield	l (%) ^b	76	67	75	52
Monomer	1 S	25	26	48	50
distribution ^c	2S	0	2	2	3
(%)	38	0	1	0	2

1G	73	68	47	37
2G	1	3	2	7
3G	1	1	1	1

Reaction conditions: lignocellulose (1.0 g), 5%Ru/C (0.1 g), methanol (20 mL), 250°C, 3h, and initial H₂ pressure of 3MPa.

^aCalculated based on weighed of electronic scales.

^bMonomeryield=weightmonomers/weightllignin oil×100%

^c"1S", "2S", "3S", "1G", "2G" and "3G" sign 2-methoxy-4-propylphenol, 4-(3-hydroxypropyl)-2-methoxyphenol, 2-methoxy-4-(3-methoxypropyl)phenol, 2,6-dimethoxy-4-propylphenol, 4-(3-hydroxypropyl)-2,6-dimethoxyphenol and 2,6-dimethoxy-4-(3-methoxypropyl)phenol, respectively.

III. Experimental procedures.

The preparation process of lignin oil

Lignin oil was derived from raw lignocellulosic biomass by reductive depolymerization. In a typical experiment, 1.0 g of raw lignocellulosic biomass sawdust (beech, birch, pine or cornstalk), 0.1 g Ru/C and 20 mL methanol were loaded into a 50 mL Teflon-lined stainless-steel autoclave. The reactor was sealed, purged with H₂ three times and pressurized with 3 MPa at room temperature. The mixture was stirred at 800 rpm and the temperature was increased to 250 °C for 3h. After reaction, the autoclave was cooled in ice-water bath immediately. The lignin oil was obtained from reaction mixture by vacuum distillation to remove solvent.