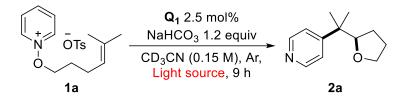
Supporting Information

Visible-Light-Induced Cascade Radical Ring-Closure and Pyridylation for the Synthesis of Tetrahydrofurans

Yechan Kim, Kangjae Lee, Gangadhar Rao Mathi, Inwon Kim, Sungwoo Hong*

Department of Chemistry, Korea Advance Institute of Science and Technology (KAIST), and Center for Catalytic Hydrocarbon Functionalization Institute for Basic Science (IBS), Daejeon, 34141, Korea

I. General Methods and Materials	S2
II. Control Experiments	S2
III. Absorption spectra	S 6
IV. Stern–Volmer quenching experiment	S7
V. Cyclic Voltammetry	S 8
VII. Experimental Procedure & Compound Characterizations	S9

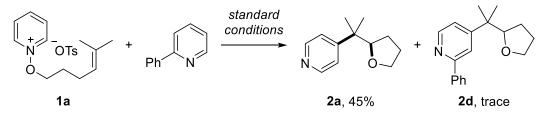

Appendix ISpectral Copies of ¹H-, ¹³C- and ¹⁹F-NMR Data Obtained in this StudyS35

I. General Methods and Materials.

Unless stated otherwise, reactions were performed in flame-dried glassware. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F²⁵⁴ plates and visualization on TLC was achieved by UV light (254 and 365 nm). Flash column chromatography was undertaken on silica gel (400-630 mesh) or a Combi*Flash*[®] R_t^+ system with Redi*Sep*[®] R_t silica columns (230-400 mesh) using a proper eluent. ¹H NMR was recorded on Brucker Avance 400 MHz or Agilent Technologies DD2 600 MHz, and chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, dd = doublet of doublet, td = triplet of doublet, ddd = doublet of doublet. Coupling constants, J, were reported in hertz unit (Hz). ¹³C NMR was recorded on Brucker Avance 100 MHz or Agilent Technologies DD2 150 MHz and was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the centerline of a triplet at 77.0 ppm of CDCl₃. ¹⁹F NMR was recorded on Agilent Technologies DD2 (564 MHz). High-resolution mass spectra were obtained by using EI or FAB method from Korea Basic Science Institute (Daegu) or ESI from KAIST Research Analysis Center (Daejeon). Commercial grade reagents and solvents were used without further purification except as indicated below.

II. Control Experiments

Scheme S1. Light source screening



Entry	Light source	Result (NMR yield)
1	Green LED	No reaction, SM fully remained
2	Red LED	No reaction, SM fully remained
3	Blue LED	77%

Reactions were conducted in cap test tube (12 mL) sealed by assembled screw cap with hole and PTFE/silicone septa. 1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (1a) (36.3 mg, 0.10 mmol), 3-(diphenylphosphoryl)-6-methoxy-1-methylquinolin-2(1H)-one (Q_1) (1.0 mg, 0.0025 mmol), and NaHCO₃ (10.1 mg, 0.12 mmol) were combined in CH₃CN (0.67 mL) under argon atmosphere. The mixture was placed in the irradiation apparatus equipped with a blue LED. The resulting mixture was stirred at room temperature. After 9 hours, the reaction mixture was diluted and

filtered through a nylon syringe filter (pore size: $0.2 \ \mu m$) with CH₂Cl₂ (10 mL). The yield of product was deteremined by ¹H NMR analysis using caffeine as an internal standard.

Scheme S2. Reaction with pyridine

Reaction was conducted in cap test tube (12 mL) sealed by assembled screw cap with hole and PTFE/silicone septa. 1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (1a) (36.3 mg, 0.10 mmol), 3-(diphenylphosphoryl)-6-methoxy-1-methylquinolin-2(1H)-one (Q_1) (1.0 mg, 0.0025 mmol), NaHCO₃ (10.1 mg, 0.12 mmol), and 2-phenylpyridine (15.5 mg, 0.10 mmol) were combined in CD₃CN (0.67 mL) under argon atmosphere. The mixture was placed in the irradiation apparatus equipped with a blue LED. The resulting mixture was stirred at room temperature. The reaction mixture was monitored by TLC using (CH₂Cl₂/MeOH = 15:1) as the mobile phase. After 72 h, the reaction mixture was diluted and filtered through a nylon syringe filter (pore size: 0.2 µm) with CH₂Cl₂ (10 mL). The yield of product was determined by ¹H NMR analysis using caffeine as an internal standard. The yield of **2a** was determined to be 45% (0.045 mmol of **2a**).

Quantum yield measurements

Blue LED ($\lambda_{max} = 415 \text{ nm}$) was used for measurement of quantum yield.

Determination of the light intensity at 415 nm

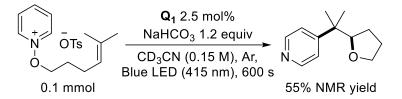
According to the procedure of Yoon,^{S2} the photon flux of the LED ($\lambda_{max} = 415$ nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H₂SO₄ (10 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (5.0 mg) and sodium acetate (1.13 g) in H₂SO₄ (5.0 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 45 seconds at $\lambda_{max} = 415$ nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was

calculated using eq 1.

mol of Fe²⁺ =
$$\frac{V \cdot \Delta A_{510 \ nm}}{l \cdot \epsilon} = \frac{(0.00235 \ L) \cdot (2.24)}{(1.00 \ cm) \cdot (11,100 \ \frac{L}{mol} \cdot cm)} = 4.74 \times 10^{-7} \ mol$$
 (1)

V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length (1.00 cm), and ϵ is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 Lmol⁻¹cm⁻¹).^{S3} The photon flux can be calculated using eq 2.

Photon flux =
$$\frac{mol \ of \ Fe^{2+}}{\emptyset \cdot t \cdot f} = \frac{4.74 \times 10^{-7} \ mol}{(1.12) \cdot (45 \ s) \cdot (0.999)} = 9.41 \times 10^{-9} \ einstein/s$$
 (2)


Where Φ is the quantum yield for the ferrioxalate actinometer (1.12 at $\lambda = 415$ nm),⁸⁴ t is the irradiation time (45 s), and f is the fraction of light absorbed at 415 nm by the ferrioxalate actinometer. This value is calculated using eq 3 where A_{415z nm} is the absorbance of the ferrioxalate solution at 415 nm. An absorption spectrum gave an A_{415 nm} value of > 3, indicating that the fraction of absorbed light (f) is > 0.999.

$$f = 1 - 10^{-A_{415} nm}$$
(3)

The photon flux was thus calculated (average of three experiments) to be 9.41×10^{-9} einstein s⁻¹

Determination of the reaction quantum yield.

Scheme S3.

The reaction mixture was stirred and irradiated by blue LED ($\lambda_{max} = 415 \text{ nm}$) for 600 s. After irradiation, the reaction mixture was passed through a celite plug. The yield of product was determined by ¹H NMR analysis using caffeine as an internal standard. The yield of **3a** was determined to be 55% (55 × 10⁻⁶ mol of **3a**). The reaction quantum yield (Φ) was determined using eq 4 where the photon flux is 5.09 × 10⁻⁹ einsteins s⁻¹ (determined by actinometry as described above), t is the reaction time (600 s) and f is the fraction of incident light absorbed by the catalyst, determined using eq 3. An absorption spectrum of the catalyst gave an absorbance value of 2.28 at 415 nm, indicating that the fraction of light absorbed by the photocatalyst (f) is 0.995.

$$\Phi = \frac{mol \ of \ product}{flux \cdot t \cdot f}$$

$$\Phi = \frac{55 \times 10^{-6} \ mol}{9.41 \times 10^{-9} \ einstein \ s^{-1} \cdot 600 \ s \cdot 0.995} = 9.8$$
(4)

The reaction quantum yield (Φ) was calculated to be 9.8.

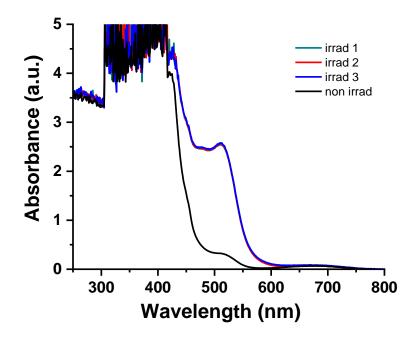


Figure S1. Three irradiation experiments and non-irradiation experiment absorption spectra

III. Absorption spectra

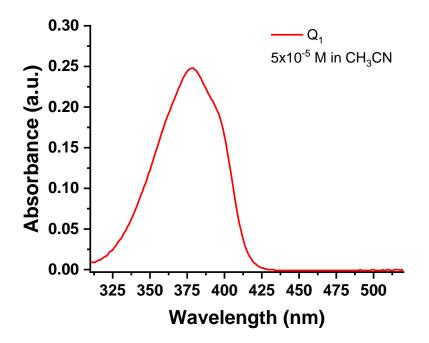


Figure S2. Absorption spectra of Q_{1} . (5×10⁻⁵ M in acetonitrile). The wavelength of maximum absorbance is 378 nm. The tail wavelength was considered about 437 nm.

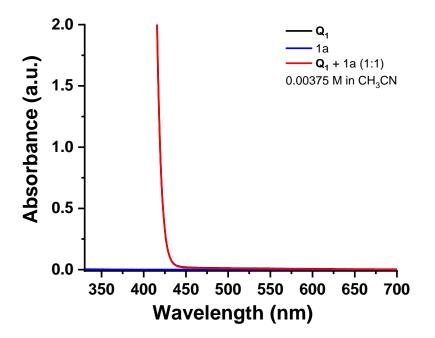
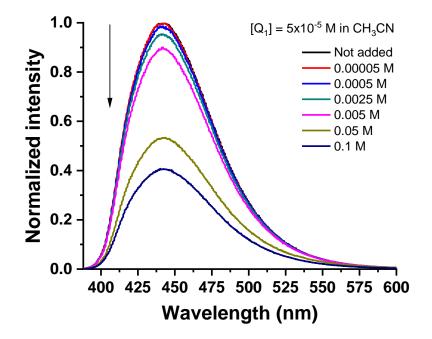



Figure S3. Absorption spectra of Q_1 , 1a, and mixture of Q_1 and 1a (0.00375 M in acetonitrile).

IV. Stern–Volmer quenching experiment

Figure S4. Quenching of the photoredox catalyst Q_1 emission (5×10⁻⁵ M in acetonitrile) in the presence of increasing amounts of pyridinium salt (1a). Excitation wavelength : 378 nm, Bandwidth : Ex 3.0 nm, Em 3.0 nm

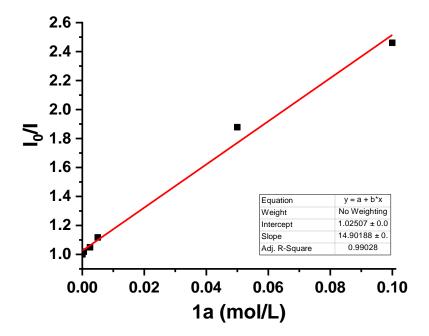


Figure S5. Stern-Volmer quenching plot.

V. Cyclic Voltammetry

Cyclic voltammetry was measured by a potentiostat (CH instrument, 600E) with conventional three electrode system (Reference electrode: Ag/Ag⁺, working electrode: Glassy carbon, counter electrode: Pt wire, Supporting electrolyte: 0.1 M NBu₄PF₆ CH₃CN) at 50 mV/sec of scan rate.

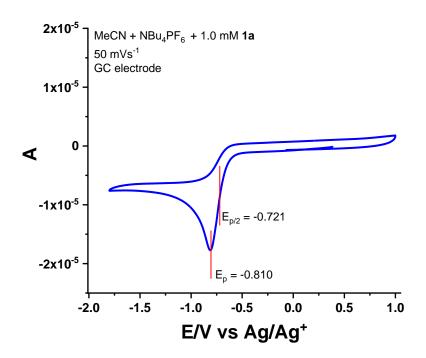
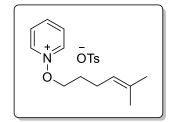
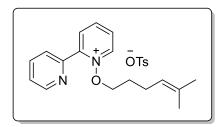


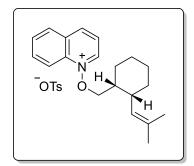
Figure S6. CV of 1a (1 mM in CH₃CN)

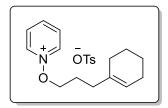

References

- [S1] I. Kim, M. Min, D. Kang, K. Kim, S. Hong, Org. Lett. 2017, 19, 1394.
- [S2] M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426.
- [S3] H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem. 2004, 76, 2105.
- [S4] E. E. Wegner, A. W. Adamson, J. Am. Chem. Soc. 1966, 88, 394.

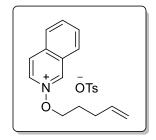

VI. Experimental Procedure and Compound Characterizations

General Procedure for *N*-alkenyloxypyridinium Salts (GP1)

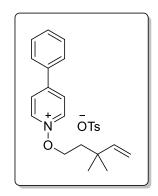

Pyridine *N*-oxide (1 mmol) and appropriate alkyl tosylate (1.1 mmol) were stirred in CH_3CN (1.4 mL) for overnight at 80 °C. The reaction solvent was evaporated under reduced pressure. The product was recrystallized from CH_2Cl_2 (1 mL) and diethyl ether (100 mL) solution at 0 °C. A white solid product was obtained.


1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (1a). Prepared according to **GP1**. **1a** (265.3 mg; 73%) was obtained. White solid. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 9.41 (d, J = 6.3 Hz, 2H), 8.46 (t, J = 7.8 Hz, 1H), 8.18 (t, J = 7.1 Hz, 2H), 7.66 (d, J = 7.7 Hz, 2H), 7.11 (d, J = 7.7 Hz, 2H), 5.05 (t, J = 7.4 Hz, 1H), 4.58 (t, J = 6.6 Hz, 2H), 2.30 (s, 3H), 2.07 (q, J = 7.5 Hz, 2H), 1.75 (p, J = 7.1 Hz, 2H), 1.66 (s, 3H), 1.57 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 145.2, 145.0, 141.9, 139.5, 133.5, 130.3, 128.9, 126.1, 122.7, 83.7, 28.0, 25.7, 24.0, 21.3, 17.8. HRMS (FAB) m/z calcd. For C₁₂H₁₈NO⁺ [M-OTs⁻]⁺: 192.1383, found : 192.1389.

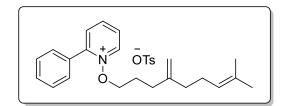
 2H), 1.69 (dt, J = 8.5, 6.5 Hz, 2H), 1.64 (d, J = 1.4 Hz, 3H), 1.51 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 151.3, 150.5, 147.0, 145.6, 145.4, 144.3, 139.5, 138.0, 133.8, 131.3, 130.8, 129.0, 126.9, 126.4, 122.7, 84.8, 28.2, 25.9, 24.2, 21.5, 18.0. HRMS (FAB) m/z calcd. For C₁₇H₂₁N₂O⁺ [M-OTs⁻]⁺: 269.1648, found : 269.1651.

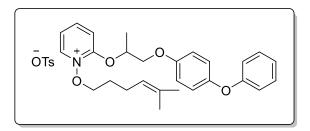


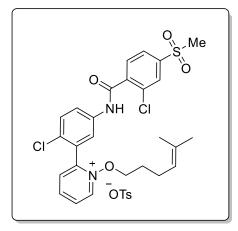
1-(((1*R***,2***R***)-2-(2-methylprop-1-en-1-yl)cyclohexyl)methoxy)quinolin-1-ium 4 methylbenzenesulfonate (10).** Prepared according to **GP1**. **10** (140.3 mg; 30%) was obtained. Pale yellow solid. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 10.21 (d, J = 5.1 Hz, 1H), 9.14 – 9.07 (m, 1H), 8.39 (d, J = 8.2 Hz, 1H), 8.36 – 8.28 (m, 2H), 8.17 (ddd, J = 8.7, 7.0, 1.2 Hz, 1H), 7.99 (t, J = 7.6Hz, 1H), 7.69 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 7.7 Hz, 2H), 5.45 (d, J = 9.8 Hz, 1H), 4.52 (dd, J = 7.1, 2.2 Hz, 2H), 2.90 (dq, J = 8.6, 4.1 Hz, 1H), 2.40 – 2.32 (m, 1H), 2.32 (s, 3H), 1.79 (dt, J = 12.7, 3.8 Hz, 1H), 1.75 (s, 3H), 1.72 (dt, J = 13.1, 3.8 Hz, 1H), 1.68 (s, 3H), 1.64 – 1.44 (m, 5H), 1.40 (qt, J = 12.2, 9.5 Hz, 1H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 146.6, 146.3, 145.4, 139.4, 136.8, 136.6, 134.4, 131.4, 131.4, 131.0, 128.9, 126.4, 124.0, 123.6, 116.4, 87.1, 39.8, 34.5, 32.3, 26.5, 25.7, 24.8, 22.0, 21.5, 18.3. HRMS (FAB) m/z calcd. For C₂₀H₂₆NO⁺ [M-OTs⁻]⁺: 296.2009, found : 296.2011.



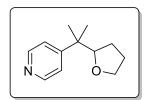
1-(3-(cyclohex-1-en-1-yl)propoxy)pyridin-1-ium 4-methylbenzenesulfonate (1u). Prepared according to **GP1**. **1u** (253.2 mg; 65%) was obtained. White solid. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 9.38 (d, J = 6.3 Hz, 2H), 8.47 (t, J = 7.7 Hz, 1H), 8.21 (t, J = 7.1 Hz, 2H), 7.67 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 5.43 (s, 1H), 4.65 (t, J = 6.4 Hz, 2H), 2.33 (s, 3H), 2.06 (t, J = 7.8 Hz, 2H), 1.97 (ddq, J = 6.2, 4.2, 2.1 Hz, 2H), 1.91 – 1.85 (m, 4H), 1.64 – 1.58 (m, 2H), 1.56 – 1.51 (m, 2H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 145.3, 145.2, 142.0, 139.6, 136.4, 130.5, 129.1,

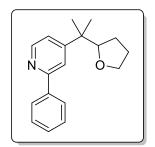

126.3, 122.8, 84.3, 34.0, 28.6, 26.1, 25.7, 23.4, 23.0, 21.5. HRMS (FAB) m/z calcd. For $C_{14}H_{20}NO^+$ [M-OTs⁻]⁺: 218.1539, found : 218.1543.


2-(pent-4-en-1-yloxy)isoquinolin-2-ium 4-methylbenzenesulfonate (1aa). Prepared according to **GP1. 1aa** (273.7 mg; 71%) was obtained. White solid. ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 10.98 (d, J = 2.2 Hz, 1H), 8.87 (dq, J = 8.5, 1.0 Hz, 1H), 8.55 (dd, J = 7.2, 2.2 Hz, 1H), 8.34 (dt, J = 7.2, 0.6 Hz, 1H), 8.19 – 8.14 (m, 2H), 8.02 (dt, J = 8.3, 4.1 Hz, 1H), 7.74 – 7.67 (m, 2H), 7.16 – 7.11 (m, 2H), 5.85 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.11 (dq, J = 17.1, 1.7 Hz, 1H), 5.04 (ddt, J = 10.2, 2.0, 1.3 Hz, 1H), 4.86 (t, J = 6.4 Hz, 2H), 2.34 (s, 3H), 2.28 (dtt, J = 7.8, 6.4, 1.4 Hz, 2H), 1.98 (dq, J = 8.8, 6.5 Hz, 2H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 146.5, 145.4, 139.6, 137.6, 137.5, 137.1, 132.3, 132.1, 132.0, 129.0, 128.8, 128.4, 127.9, 126.3, 116.1, 83.6, 29.9, 27.3, 21.5. HRMS (FAB) m/z calcd. For C₁₄H₁₆NO⁺ [M-OTs⁻]⁺: 214.1226, found : 214.1235.

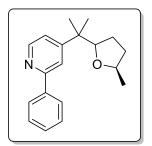

1-((3,3-dimethylpent-4-en-1-yl)oxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (1ac). Prepared according to **GP1**. **1ac** (356.0 mg; 81%) was obtained. White solid. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 9.34 – 9.30 (m, 2H), 8.34 (d, J = 7.0 Hz, 2H), 7.81 – 7.77 (m, 2H), 7.73 – 7.69 (m, 2H), 7.61 – 7.56 (m, 1H), 7.53 (td, J = 8.0, 2.7 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 5.80 (ddd, J = 17.8, 10.4, 1.7 Hz, 1H), 5.00 (d, J = 1.7 Hz, 1H), 4.97 (dt, J = 5.5, 1.2 Hz, 1H), 4.63 (td, J = 7.0, 2.8 Hz, 2H), 2.30 (s, 3H), 1.83 (td, J = 7.1, 2.2 Hz, 2H), 1.05 (d, J = 1.8 Hz, 6H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 156.3, 147.1, 145.4, 141.8, 139.6, 133.9, 132.9, 130.3, 129.1, 128.6, 126.9, 126.4, 112.2, 82.1, 39.5, 36.1, 27.3, 21.5. HRMS (FAB) m/z calcd. For $C_{18}H_{22}NO^+$ [M-OTs⁻]⁺: 268.1696, found : 268.1698.

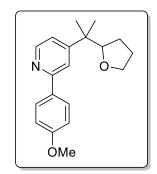
1-((8-methyl-4-methylenenon-7-en-1-yl)oxy)-2-phenylpyridin-1-ium 4-methylbenzenesulfonate (3c). Prepared according to **GP1. 3c** (444.3 mg; 90%) was obtained. White solid. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 9.74 – 9.68 (m, 1H), 8.62 (t, J = 7.1 Hz, 1H), 8.21 – 8.16 (m, 1H), 8.10 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 6.8 Hz, 2H), 7.66 (dd, J = 8.0, 2.7 Hz, 2H), 7.64 – 7.61 (m, 1H), 7.60 – 7.55 (m, 2H), 7.10 (d, J = 7.0 Hz, 2H), 5.11 – 4.99 (m, 1H), 4.64 (s, 1H), 4.46 (s, 1H), 4.26 – 4.20 (m, 2H), 2.30 (s, 3H), 2.02 – 1.95 (m, 2H), 1.86 – 1.81 (m, 2H), 1.76 – 1.71 (m, 2H), 1.67 (s, 3H), 1.65 – 1.55 (m, 5H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 152.0, 148.0, 146.1, 145.2, 143.7, 139.2, 132.4, 131.9, 131.3, 130.4, 129.5, 129.3, 128.8, 128.4, 126.2, 124.2, 109.6, 83.2, 36.1, 31.7, 26.6, 25.8, 25.7, 21.3, 17.8. HRMS (FAB) m/z calcd. For C₂₂H₂₈NO⁺ [M-OTs⁻]⁺: 322.2165, found : 322.2169.


1-((5-methylhex-4-en-1-yl)oxy)-2-((1-phenoxypropan-2-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (3e). Prepared according to **GP1. 3e** (121.1 mg; 20%) was obtained. Colorless gum. ¹H NMR (400 MHz, Methanol- d_4) δ 8.81 (dd, J = 6.8, 1.7 Hz, 1H), 8.41 (ddd, J = 9.1, 7.5, 1.8 Hz, 1H), 7.98 (dd, J = 9.0, 1.5 Hz, 1H), 7.76 – 7.69 (m, 4H), 7.56 – 7.47 (m, 1H), 7.32 – 7.23 (m, 2H), 7.22 – 7.16 (m, 4H), 7.07 – 6.99 (m, 1H), 6.90 (d, J = 1.8 Hz, 3H), 6.90 – 6.85 (m, 2H), 6.75 – 6.66 (m, 1H), 5.58 (pd, J = 6.5, 2.8 Hz, 1H), 5.09 (tp, J = 7.2, 1.4 Hz, 1H), 4.43 (t, J = 6.5 Hz, 2H), 4.35 (dd, J = 11.2, 2.5 Hz, 1H), 4.24 (dd, J = 11.1, 7.2 Hz, 1H), 2.32 (s, 6H), 2.11 (q, J = 7.0 Hz, 2H), 1.79 (p, J = 7.1 Hz, 2H), 1.65 (s, 3H), 1.64 (d, J = 6.4 Hz, 3H), 1.56 (s, 3H). ¹³C NMR (100 MHz, Methanol- d_4) δ 159.5, 159.1, 155.6, 152.3, 148.0, 143.6, 141.5, 141.4, 133.8, 130.7 (d, J = 1.4 Hz), 129.8, 126.9, 123.9, 123.8, 121.7, 120.3, 118.7, 116.7, 115.4, 82.7, 81.7, 71.7, 29.0, 25.9, 24.9, 21.3,

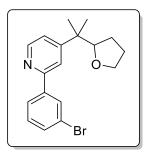

2-(2-chloro-5-(2-chloro-4-(methylsulfonyl)benzamido)phenyl)-1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (3f). Prepared according to **GP1. 3f** (416.3 mg; 59%) was obtained. White solid. ¹H NMR (400 MHz, Acetone- d_6) δ 10.96 (s, 1H), 9.69 (dd, J = 6.5, 1.3 Hz, 1H), 8.86 (td, J = 7.8, 1.3 Hz, 1H), 8.50 – 8.36 (m, 3H), 8.27 (dd, J = 8.9, 2.6 Hz, 1H), 8.00 (d, J = 1.7 Hz, 1H), 7.93 (dd, J = 8.0, 1.7 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.9 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 5.00 – 4.86 (m, 1H), 4.72 – 4.41 (m, 2H), 3.20 (s, 3H), 2.31 (s, 3H), 1.76 (h, J = 7.4 Hz, 2H), 1.68 – 1.55 (m, 5H), 1.50 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 165.19, 150.64, 146.71, 145.68, 144.51, 143.71, 141.41, 139.52, 139.43, 133.28, 132.81, 132.70, 131.20, 131.02, 130.79, 129.47, 129.11, 129.06, 128.31, 127.01, 126.71, 125.08, 123.62, 123.44, 84.44, 44.06, 28.64, 25.79, 24.34, 21.22, 17.80. HRMS (FAB) m/z calcd. For C₂₆H₂₇Cl₂N₂O4S⁺ [M-OTs⁻]⁺: 533.1063, found : 533.1072.

General Procedure for Visible-Light Induced Pyridylation (GP2)

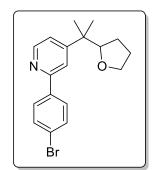

Reactions were conducted in cap test tube (12 mL) sealed by assembled screw cap with hole and PTFE/silicone septa. 1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (1a) (54.5 mg, 0.15 mmol), 3-(diphenylphosphoryl)-6-methoxy-1-methylquinolin-2(1H)-one (Q_1) (1.5 mg, 0.00375 mmol), and NaHCO₃ (15.1 mg, 0.18 mmol) were combined in CH₃CN (1.0 mL) under argon atmosphere. The mixture was placed in the irradiation apparatus equipped with a blue LED. The resulting mixture was stirred at room temperature. The reaction mixture was monitored by TLC using (CH₂Cl₂/MeOH = 15:1) as the mobile phase. After disappearance of starting material, the reaction mixture was diluted and filtered through a nylon syringe filter (pore size: 0.2 µm) with CH₂Cl₂ (10 mL). After removal of solvent, the residue was purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:2) to give the desired product compound **3a** (20.1 mg, 70%) as a pale yellow oil.


4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2a). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:2). Prepared according to **GP2**. From 1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (54.5 mg, 0.15 mmol), compound **2a** (21.2 mg, 74%) was obtained. Pale yellow oil. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 8.46 (dd, J = 4.7, 1.5 Hz, 2H), 7.32 (dd, J = 4.7, 1.7 Hz, 2H), 3.90 (dd, J = 8.4, 6.5 Hz, 1H), 3.72 – 3.63 (m, 2H), 1.80 – 1.69 (m, 2H), 1.67 – 1.60 (m, 1H), 1.44 – 1.36 (m, 1H), 1.31 (s, 3H), 1.30 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 156.8, 149.9, 122.9, 86.9, 69.0, 41.7, 27.6, 26.6, 24.9, 24.2. HRMS (EI) m/z calcd. For C₁₂H₁₇NO [M]⁺: 191.1310, found : 191.1311.

2-phenyl-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2b). Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 1:1.5). Prepared according to **GP2**. From 1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (65.9 mg, 0.15 mmol), compound **2b** (29.3 mg, 73%) was obtained. Colorless oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.55 (dd, *J* = 5.3, 0.8 Hz, 1H), 8.03 – 7.98 (m, 2H), 7.81 (dd, *J* = 1.9, 0.8 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.43 – 7.38 (m, 1H), 7.29 (dd, *J* = 5.3, 1.8 Hz, 1H), 3.95 (dd, *J* = 8.6, 6.4 Hz, 1H), 3.74 – 3.68 (m, 2H), 1.80 – 1.72 (m, 2H), 1.69 – 1.62 (m, 1H), 1.48 – 1.40 (m, 1H), 1.37 (s, 3H), 1.36 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 157.7, 157.3, 149.7, 140.5, 129.2, 127.5, 127.5, 121.6, 119.8, 87.0, 69.1, 42.0, 27.7, 26.7, 25.0, 24.4. HRMS (EI) m/z calcd. For C₁₈H₂₁NO [M]⁺: 267.1623, found : 267.1624.

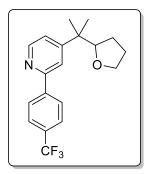


4-(2-((5*R***)-5-methyltetrahydrofuran-2-yl)propan-2-yl)-2-phenylpyridine (2c).** d.r. 2.0:1. Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 1:2.5). Prepared according to **GP2**. From (*R*)-1-((6-methylhept-5-en-2-yl)oxy)-2-phenylpyridin-1-ium 4-methylbenzenesulfonate (68.0 mg, 0.15 mmol), compound **2c** (31.4 mg, 72%) was obtained. Colorless oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.56 (dd, *J* = 5.3, 0.8 Hz, 1H), 8.04 – 7.98 (m, 2H), 7.84 – 7.80 (m, 1H), 7.50 – 7.44 (m, 2H), 7.44 – 7.38 (m, 1H), 7.30 (dd, *J* = 5.3, 1.8 Hz, 1H), 4.12 (dd, *J* = 9.0, 6.0 Hz, 0.65H – major isomer), 3.97 (t, *J* = 7.5 Hz, 0.35H – minor isomer), 3.93 – 3.85 (m, 1H), 1.90 – 1.69 (m, 2H), 1.55 – 1.38 (m, 2H), 1.38 – 1.34 (m, 6H), 1.17 (d, *J* = 6.1 Hz, 1.95H – major isomer), 1.14 (d, *J* = 6.0 Hz, 1.05H – minor isomer). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 157.6, 157.3, 157.2, 149.7, 149.6, 140.6, 140.6, 129.2, 129.2, 129.1, 127.4, 127.4, 121.7, 121.7, 119.8, 119.8, 86.8, 86.6, 76.6, 75.9, 42.3, 41.7, 34.8, 33.5, 28.8, 27.5, 25.0, 24.5, 24.5, 21.5, 21.2. HRMS (EI) m/z calcd. For C₁₉H₂₃NO [M]⁺: 281.1780, found : 281.1781.

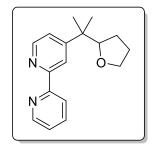


2-(4-methoxyphenyl)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2d). Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 1:1.5). Prepared according to **GP2**. From 2-(4-methoxyphenyl)-1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (70.4 mg, 0.15 mmol), compound **2d** (32.6 mg, 73%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.50 (dd, *J* = 5.3, 0.8 Hz, 1H), 7.96 (d, *J* = 8.9 Hz, 2H), 7.74 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.23 (dd, *J* = 5.3, 1.8 Hz, 1H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.98 – 3.92 (m, 1H), 3.85 (s, 3H), 3.73 – 3.68 (m, 2H), 1.81 – 1.72 (m, 2H), 1.69 – 1.63 (m, 1H), 1.47 – 1.40 (m, 1H), 1.36 (s, 3H), 1.35 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 160.9, 157.5, 157.0, 149.6, 133.1, 128.7, 120.9,

118.9, 114.5, 87.0, 69.1, 55.9, 41.9, 27.7, 26.7, 24.9, 24.5. HRMS (EI) m/z calcd. For C₁₉H₂₃NO₂ [M]⁺: 297.1729, found : 297.1729.

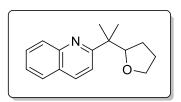


2-(3-bromophenyl)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2e). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:4). Prepared according to **GP2**. From 2-(3-bromophenyl)-1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (77.8 mg, 0.15 mmol), compound **2e** (45.7 mg, 88%) was obtained. Colorless gum. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.56 (dd, *J* = 5.2, 0.8 Hz, 1H), 8.19 (t, *J* = 1.8 Hz, 1H), 7.95 (ddd, *J* = 7.8, 1.7, 1.1 Hz, 1H), 7.78 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.54 (ddd, *J* = 7.9, 2.0, 1.1 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.32 (dd, *J* = 5.2, 1.8 Hz, 1H), 3.98 – 3.91 (m, 1H), 3.73 – 3.67 (m, 2H), 1.85 – 1.72 (m, 2H), 1.71 – 1.60 (m, 1H), 1.47 – 1.39 (m, 1H), 1.37 (s, 3H), 1.36 (s, 3H). ¹³C NMR (151 MHz, Methylene Chloride-*d*₂) δ 157.9, 155.7, 149.8, 142.7, 132.1, 130.7, 130.5, 126.1, 123.3, 122.2, 119.8, 86.9, 69.1, 42.0, 27.8, 26.7, 25.2, 24.3. HRMS (EI) m/z calcd. For C₁₈H₂₀BrNO [M]⁺: 345.0728, found : 345.0729.

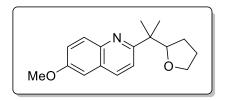


2-(4-bromophenyl)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (**2f**). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:4). Prepared according to **GP2**. From 2-(4-bromophenyl)-1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (77.8 mg, 0.15 mmol), compound **2f** (43.1 mg, 83%) was obtained. Colorless gum. ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 8.55 (dd, J = 5.3, 0.8 Hz, 1H), 7.95 – 7.88 (m, 2H), 7.79 (dd, J = 1.8, 0.8 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.31 (dd, J = 5.3, 1.8 Hz, 1H), 3.98 – 3.90 (m, 1H), 3.74 – 3.66 (m, 2H), 1.85 – 1.71 (m, 2H), 1.71 – 1.61 (m, 1H), 1.47 – 1.38 (m, 1H), 1.37 (s, 3H), 1.35 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 157.9, 156.1, 149.8, 139.5, 132.2, 129.1, 123.5, 121.9, 119.5, 87.0,

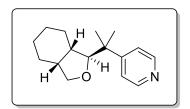
69.1, 42.0, 27.8, 26.7, 25.2, 24.3. HRMS (EI) m/z calcd. For $C_{18}H_{20}BrNO \ [M]^+$: 345.0728, found : 345.0726.

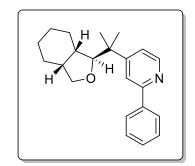


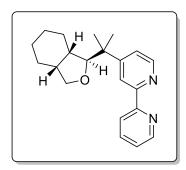
4-(2-(tetrahydrofuran-2-yl)propan-2-yl)-2-(4-(trifluoromethyl)phenyl)pyridine (2g). Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 1:2). Prepared according to **GP2**. From 1-((5-methylhex-4-en-1-yl)oxy)-2-(4-(trifluoromethyl)phenyl)pyridin-1-ium 4-methylbenzenesulfonate (76.1 mg, 0.15 mmol), compound **2g** (36.7 mg, 73%) was obtained. Colorless oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.59 (dd, *J* = 5.3, 0.8 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 2H), 7.86 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.36 (dd, *J* = 5.2, 1.8 Hz, 1H), 3.98 – 3.92 (m, 1H), 3.74 – 3.67 (m, 2H), 1.84 – 1.73 (m, 2H), 1.70 – 1.61 (m, 1H), 1.48 – 1.40 (m, 1H), 1.38 (s, 3H), 1.37 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 158.1, 155.8, 150.0, 144.1, 130.8 (q, *J*_{C-F} = 32.3 Hz), 127.8, 126.1 (q, *J*_{C-F} = 3.9 Hz), 125.0 (q, *J*_{C-F} = 272.1 Hz), 122.5, 120.2, 87.0, 69.1, 42.0, 27.8, 26.7, 25.3, 24.2. HRMS (EI) m/z calcd. For C₁₉H₂₀F₃NO [M]⁺: 335.1497, found : 335.1498.

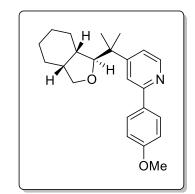


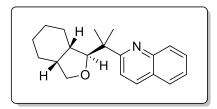
4-(2-(tetrahydrofuran-2-yl)propan-2-yl)-2,2'-bipyridine (2h). Purified by flash chromatography on alumina basic (EtOAc/*n*-hexane = 1:4). Prepared according to **GP2**. From 1-((5-methylhex-4-en-1-yl)oxy)-[2,2'-bipyridin]-1-ium 4-methylbenzenesulfonate (66.1 mg, 0.15 mmol), compound **2h** (22.9 mg, 57%) was obtained. Colorless gum. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.66 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 8.55 (dd, *J* = 5.2, 0.8 Hz, 1H), 8.48 (dd, *J* = 2.0, 0.8 Hz, 1H), 8.42 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.81 (ddd, *J* = 8.0, 7.5, 1.8 Hz, 1H), 7.38 (dd, *J* = 5.2, 2.0 Hz, 1H), 7.30 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H), 4.03 – 3.95 (m, 1H), 3.77 – 3.65 (m, 2H), 1.83 – 1.72 (m, 2H), 1.72 – 1.64 (m, 1H), 1.51 – 1.42 (m, 1H), 1.38 (s, 3H), 1.38 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 158.0, 157.1,


156.2, 149.6, 149.3, 137.3, 124.1, 123.1, 121.5, 119.8, 86.9, 69.1, 42.1, 27.7, 26.7, 24.9, 24.3. HRMS (EI) m/z calcd. For C₁₇H₂₀N₂O [M]⁺: 268.1576, found : 268.1578.

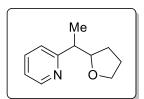

2-(2-(tetrahydrofuran-2-yl)propan-2-yl)quinolone (2i). Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 1:2). Prepared according to **GP2**. From 1-((5-methylhex-4-en-1-yl)oxy)quinolin-1-ium 4-methylbenzenesulfonate (62.0 mg, 0.15 mmol), compound **2i** (18.4 mg, 51%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.08 (dd, *J* = 8.7, 0.8 Hz, 1H), 8.00 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.79 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.67 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.61 (d, *J* = 8.7 Hz, 1H), 7.49 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 4.25 – 4.19 (m, 1H), 3.73 – 3.63 (m, 2H), 1.82 – 1.73 (m, 2H), 1.67 – 1.57 (m, 2H), 1.47 (s, 3H), 1.44 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 167.4, 147.9, 135.8, 129.8, 129.4, 127.9, 127.2, 126.2, 120.6, 87. 0, 69.0, 45.2, 27.5, 26.7, 24.3, 24.1. HRMS (EI) m/z calcd. For C₁₆H₁₉NO [M]⁺: 241.1467, found : 241.1465.

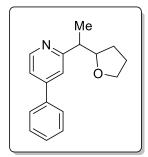

6-methoxy-2-(2-(tetrahydrofuran-2-yl)propan-2-yl)quinolone (**2j**). Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 1:1). Prepared according to **GP2**. From 6-methoxy-1-((5-methylhex-4-en-1-yl)oxy)quinolin-1-ium 4-methylbenzenesulfonate (66.5 mg, 0.15 mmol), compound **2j** (24.4 mg, 60%) was obtained. Pale yellow gum. ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 7.98 (dd, J = 8.7, 0.8 Hz, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.55 (d, J = 8.7 Hz, 1H), 7.30 (dd, J = 9.2, 2.8 Hz, 1H), 7.08 (d, J = 2.8 Hz, 1H), 4.22 – 4.16 (m, 1H), 3.91 (s, 3H), 3.73 – 3.62 (m, 2H), 1.82 – 1.71 (m, 2H), 1.67 – 1.56 (m, 2H), 1.45 (s, 3H), 1.41 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 164.8, 157.9, 143.9, 134.7, 131.2, 128.0, 121.9, 120.8, 105.5, 87.0, 68.9, 56.1, 44.9, 27.5, 26.7, 24.3, 24.1. HRMS (EI) m/z calcd. For C₁₇H₂₁NO₂ [M]⁺: 271.1572, found : 241.1575.


rel-4-(2-((1*S*,3a*R*,7a*S*)-octahydroisobenzofuran-1-yl)propan-2-yl)pyridine (2k). Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 2:1). Prepared according to **GP2**. From 1-(((1*R*,2*R*)-2-(2-methylprop-1-en-1-yl)cyclohexyl)methoxy)pyridin-1-ium 4-methylbenzenesulfonate (62.6 mg, 0.15 mmol), compound **2k** (22.8 mg, 62%) was obtained. Colorless oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.46 (d, *J* = 6.3 Hz, 2H), 7.31 (d, *J* = 6.3 Hz, 2H), 3.76 (d, *J* = 5.3 Hz, 1H), 3.60 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.52 (dd, *J* = 7.9, 6.6 Hz, 1H), 1.90 – 1.82 (m, 1H), 1.82 – 1.75 (m, 1H), 1.52 – 1.33 (m, 5H), 1.31 (s, 6H), 1.29 – 1.11 (m, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 156.6, 149.8, 122.9, 90.7, 72.3, 42.5, 39.4, 39.0, 28.8, 25.5, 25.0, 24.3, 23.6, 23.6. HRMS (EI) m/z calcd. For C₁₆H₂₃NO [M]⁺: 245.1780, found : 245.1776.

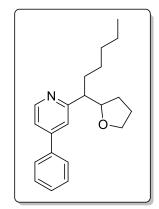

*rel-***4-**(**2-**((**1***S*,**3***aR*,**7***aS*)-**octahydroisobenzofuran-1-yl)propan-2-yl)-2-phenylpyridine (2l).** Purified by flash chromatography on silica gel (Et₂O/*n*-hexane = 1:2). Prepared according to **GP2**. From 1-(((1*R*,2*R*)-2-(2-methylprop-1-en-1-yl)cyclohexyl)methoxy)-2-phenylpyridin-1-ium 4-methylbenzenesulfonate (74.0 mg, 0.15 mmol), compound **2l** (41.0 mg, 85%) was obtained. Colorless gum. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.56 (dd, *J* = 5.3, 0.8 Hz, 1H), 8.05 – 7.97 (m, 2H), 7.80 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.46 – 7.36 (m, 1H), 7.29 (dd, *J* = 5.3, 1.8 Hz, 1H), 3.84 (d, *J* = 5.4 Hz, 1H), 3.64 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.56 (dd, *J* = 7.9, 6.7 Hz, 1H), 1.86 (dq, *J* = 24.7, 6.0 Hz, 2H), 1.57 – 1.37 (m, 5H), 1.38 (s, 6H), 1.33 – 1.18 (m, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 157.5, 157.3, 149.7, 140.6, 129.2, 129.1, 127.5, 121.6, 119.7, 90.9, 72.4, 42.7, 39.5, 39.1, 28.9, 25.6, 25.2, 24.4, 23.7, 23.6. HRMS (EI) m/z calcd. For C₂₂H₂₇NO [M]⁺: 321.2093, found : 321.2094.


rel-4-(2-((1*S*,3*aR*,7*aS*)-octahydroisobenzofuran-1-yl)propan-2-yl)-2,2'-bipyridine (2m). Purified by flash chromatography on alumina basic (EtOAc/*n*-hexane = 1:4). Prepared according to **GP2**. From 1-(((1*R*,2*R*)-2-(2-methylprop-1-en-1-yl)cyclohexyl)methoxy)-[2,2'-bipyridin]-1-ium 4-methylbenzenesulfonate (74.2 mg, 0.15 mmol), compound **2m** (28.0 mg, 58%) was obtained. Colorless gum. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.66 (ddd, *J* = 4.8, 1.9, 1.0 Hz, 1H), 8.54 (dd, *J* = 5.3, 0.8 Hz, 1H), 8.48 (dd, *J* = 2.0, 0.7 Hz, 1H), 8.42 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.81 (td, *J* = 7.7, 1.8 Hz, 1H), 7.37 (dd, *J* = 5.2, 2.0 Hz, 1H), 7.30 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H), 3.85 (d, *J* = 5.3 Hz, 1H), 3.64 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.55 (dd, *J* = 7.9, 6.8 Hz, 1H), 1.96 – 1.89 (m, 1H), 1.88 – 1.79 (m, 1H), 1.52 – 1.41 (m, 4H), 1.41 – 1.35 (m, 7H), 1.33 – 1.25 (m, 1H), 1.24 – 1.18 (m, 2H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 157.8, 157.1, 156.2, 149.6, 149.2, 137.3, 124.1, 123.2, 121.5, 119.7, 90.9, 72.3, 42.8, 39.5, 39.1, 28.9, 25.5, 25.1, 24.4, 23.7, 23.6. HRMS (EI) m/z calcd. For C₂₁H₂₆N₂O [M]⁺: 322.2045, found : 322.2044.

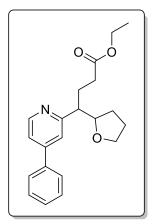

rel-2-(4-methoxyphenyl)-4-(2-((1S,3aR,7aS)-octahydroisobenzofuran-1-yl)propan-2-yl)pyridine (2n). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:4). Prepared according to GP2. From 2-(4-methoxyphenyl)-1-(((1R,2R)-2-(2-methylprop-1-en-1yl)cyclohexyl)methoxy)pyridin-1-ium 4-methylbenzenesulfonate (78.6 mg, 0.15 mmol), compound 2n (35.3 mg, 67%) was obtained. Colorless oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.50 (dd, *J* = 5.3, 0.8 Hz, 1H), 8.00 – 7.92 (m, 2H), 7.72 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.22 (dd, *J* = 5.3, 1.8 Hz, 1H), 7.04 – 6.95 (m, 2H), 3.85 (s, 3H), 3.82 (d, *J* = 5.3 Hz, 1H), 3.63 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.55 (dd, *J* = 7.9, 6.6 Hz, 1H), 1.94 – 1.75 (m, 2H), 1.52 – 1.37 (m, 5H), 1.36 (s, 6H), 1.33 – 1.25 (m, 1H), 1.24 – 1.15 (m, 2H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 161.0, 157.3, 157.0, 149.6, 133.1, 128.7, 120.9, 118.8, 114.5, 90.9, 72.4, 55.9, 42.7, 39.5, 39.1, 28.9, 25.6, 25.3, 24.3, 23.7, 23.6. HRMS (ESI) m/z calcd. For C₂₃H₂₉NO₂ [M+H]⁺: 352.2271, found : 352.2273.


rel-2-(2-((1S,3aR,7aS)-octahydroisobenzofuran-1-yl)propan-2-yl)quinolone (20). Purified by flash chromatography on silica gel (acetone/*n*-hexane = 1:3). Prepared according to **GP2**. From 1-(((1*R,2R*)-2-(2-methylprop-1-en-1-yl)cyclohexyl)methoxy)quinolin-1-ium 4-methylbenzenesulfonate (70.1 mg, 0.15 mmol), compound **20** (28.4 mg, 64%) was obtained. Pale yellow gum. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.07 (dd, *J* = 8.7, 0.8 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.79 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.67 (ddd, *J* = 8.5, 6.8, 1.5 Hz, 1H), 7.59 (d, *J* = 8.7 Hz, 1H), 7.49 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 4.11 (d, *J* = 5.7 Hz, 1H), 3.62 (dd, *J* = 7.9, 6.1 Hz, 1H), 3.54 (dd, *J* = 7.8, 6.6 Hz, 1H), 2.11 – 2.03 (m, 1H), 1.89 – 1.79 (m, 1H), 1.48 (s, 3H), 1.45 (s, 3H), 1.43 – 1.35 (m, 4H), 1.30 – 1.04 (m, 4H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 167.2, 147.9, 135.7, 129.9, 129.4, 127.9, 127.2, 126.3, 120.6, 90.7, 72.3, 46.0, 39.2, 39.2, 28.5, 25.7, 25.2, 23.8, 23.7, 23.7. HRMS (EI) m/z calcd. For C₂₀H₂₅NO [M]⁺: 295.1936, found : 295.1936.

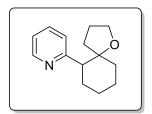
rel-6-methoxy-2-(2-((1*S*,3*aR*,7*aS*)-octahydroisobenzofuran-1-yl)propan-2-yl)quinolone (2p). Purified by flash chromatography on silica gel (acetone/*n*-hexane = 1:4). Prepared according to **GP2**. From 6-methoxy-1-(((1*R*,2*R*)-2-(2-methylprop-1-en-1-yl)cyclohexyl)methoxy)quinolin-1-ium 4methylbenzenesulfonate (74.6 mg, 0.15 mmol), compound 2p (32.7 mg, 67%) was obtained. Pale yellow gum. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 7.97 (dd, *J* = 8.7, 0.7 Hz, 1H), 7.90 (d, *J* = 9.2 Hz, 1H), 7.53 (d, *J* = 8.7 Hz, 1H), 7.31 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.08 (d, *J* = 2.8 Hz, 1H), 4.08 (d, *J* = 5.6 Hz, 1H), 3.91 (s, 3H), 3.61 (dd, *J* = 7.8, 6.0 Hz, 1H), 3.53 (dd, *J* = 7.8, 6.5 Hz, 1H), 2.10 – 2.02 (m, 1H), 1.88 – 1.79 (m, 1H), 1.46 (s, 3H), 1.43 (s, 3H), 1.42 – 1.35 (m, 4H), 1.30 – 1.00 (m, 4H). ¹³C NMR (151 MHz, Methylene Chloride-*d*₂) δ 164.6, 157.9, 143.9, 134.6, 131.2, 128.0, 121.9, 120.8, 105.5, 90.6, 72.3, 56.0, 45.6, 39.2, 39.1, 28.5, 25.7, 25.2, 23.8, 23.6, 23.6. HRMS (EI) m/z calcd. For $C_{21}H_{27}NO_2$ [M]⁺: 325.2042, found : 325.2042.

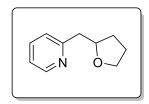


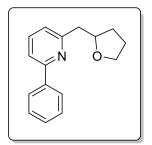
2-(1-(tetrahydrofuran-2-yl)ethyl)pyridine (2q). d.r. 2.7:1. Purified by flash chromatography on silica gel (acetone/*n*-hexane = 1:3). Prepared according to **GP2**. From (*E*)-1-(hex-4-en-1-yloxy)pyridin-1-ium 4-methylbenzenesulfonate (52.4 mg, 0.15 mmol), compound 2q (18.3 mg, 69%) was obtained. Pale yellow oil. (major diastereomer). Pale yellow oil (minor diastereomer). ¹H NMR (400 MHz, Methylene Chloride-d₂, major diastereomer) & 8.50 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.59 (td, J = 7.7, 1.9 Hz, 1H), 7.18 (dt, J = 7.9, 1.1 Hz, 1H), 7.10 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 4.05 (td, J = 8.4, 6.3 Hz, 1H), 3.75 (dtd, J = 8.3, 6.9, 0.5 Hz, 1H), 3.62 (dt, J = 8.2, 6.9 Hz, 1H), 2.88 (dq, J = 8.4, 7.0 Hz, 1H), 2.08 – 1.99 (m, 1H), 1.90 - 1.80 (m, 2H), 1.67 - 1.56 (m, 1H), 1.23 (d, J = 7.1 Hz, 3H). ¹H NMR (400 MHz, Methylene Chloride- d_2 , minor diastereomer) δ 8.49 (ddd, J = 5.0, 1.9, 1.0 Hz, 1H), 7.60 (td, J = 7.7, 1.8Hz, 1H), 7.17 (dt, J = 7.8, 1.1 Hz, 1H), 7.15 – 7.07 (m, 1H), 4.08 – 3.98 (m, 1H), 3.79 (dt, J = 8.3, 6.7Hz, 1H), 3.70 (dt, J = 8.3, 6.8 Hz, 1H), 2.89 (p, J = 7.1 Hz, 1H), 1.82 - 1.63 (m, 3H), 1.54 - 1.43 (m, 3H)1H), 1.34 (d, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2 , major diastereomer) δ 165.0, 149.5, 136.5, 123.2, 121.8, 83.6, 68.4, 47.9, 30.4, 26.3, 17.6. ¹³C NMR (150 MHz, Methylene Chlorided₂, minor diastereomer) δ 164.6, 149.6, 136.6, 123.2, 121.8, 83.6, 68.4, 47.6, 30.1, 26.4, 17.7. HRMS (EI, major diastereomer) m/z calcd. For C₁₁H₁₅NO [M]⁺: 177.1154, found : 177.1152. HRMS (EI, minor diastereomer) m/z calcd. For C₁₁H₁₅NO [M]⁺: 177.1154, found : 177.1151.

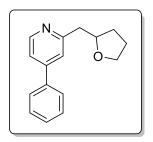


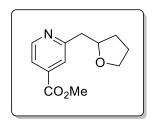
4-phenyl-2-(1-(tetrahydrofuran-2-yl)ethyl)pyridine (**2r**). d.r. 2.4:1. Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:2). Prepared according to **GP2**. From (*E*)-1-(hex-4-en-1-yloxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (63.8 mg, 0.15 mmol), compound **2r** (28.9 mg, 76%) was obtained. White solid (major diastereomer). Colorless oil (minor diastereomer). ¹H NMR (400 MHz, Methylene Chloride-*d*₂, major diastereomer) δ 8.55 (dd, *J* = 5.2, 0.8 Hz, 1H), 7.71 –

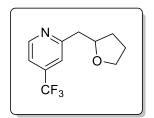

7.63 (m, 2H), 7.52 – 7.40 (m, 4H), 7.35 (dd, J = 5.1, 1.8 Hz, 1H), 4.12 (td, J = 8.3, 6.3 Hz, 1H), 3.77 (dt, J = 8.2, 6.9 Hz, 1H), 3.64 (dt, J = 8.2, 6.8 Hz, 1H), 2.97 (dq, J = 8.3, 7.1 Hz, 1H), 2.11 – 2.02 (m, 1H), 1.91 – 1.82 (m, 2H), 1.70 – 1.60 (m, 1H), 1.29 (d, J = 7.0 Hz, 3H). ¹H NMR (400 MHz, Methylene Chloride- d_2 , minor diastereomer) δ 8.55 (dd, J = 5.2, 0.8 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.52 – 7.40 (m, 4H), 7.36 (dd, J = 5.2, 1.8 Hz, 1H), 4.10 (td, J = 7.6, 6.3 Hz, 1H), 3.81 (dt, J = 8.4, 6.6 Hz, 1H), 3.76 – 3.69 (m, 1H), 3.02 – 2.93 (m, 1H), 1.84 – 1.70 (m, 3H), 1.58 – 1.50 (m, 1H), 1.40 (d, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2 , major diastereomer) δ 165.6, 150.0, 148.8, 139.2, 129.5, 129.4, 127.6, 121.2, 119.9, 83.6, 68.4, 48.1, 30.4, 26.4, 17.7. ¹³C NMR (150 MHz, Methylene Chloride- d_2 , minor diastereomer) δ 165.2, 150.1, 148.9, 139.1, 129.6, 129.4, 127.6, 121.1, 119.9, 83.6, 68.5, 47.8, 30.1, 26.4, 17.8. HRMS (EI, major diastereomer) m/z calcd. For C₁₇H₁₉NO [M]⁺: 253.1467, found : 253.1466. HRMS (EI, minor diastereomer) m/z calcd. For C₁₇H₁₉NO [M]⁺: 253.1467, found : 253.1466.

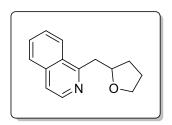

4-phenyl-2-(1-(tetrahydrofuran-2-yl)hexyl)pyridine (2s). d.r. flash 2.5:1. Purified by chromatography on silica gel (acetone/*n*-hexane = 1:5). Prepared according to **GP2**. From (E)-1-(dec-4-en-1-yloxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (72.2 mg, 0.15 mmol), compound 2s (36.2 mg, 78%) was obtained. Yellow oil (major diastereomer). Yellow oil (minor diastereomer). ¹H NMR (400 MHz, Methylene Chloride- d_2 , major diastereomer) δ 8.56 (dd, J = 5.1, 0.8 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.51 – 7.40 (m, 3H), 7.39 (dd, *J* = 1.9, 0.8 Hz, 1H), 7.35 (dd, *J* = 5.2, 1.8 Hz, 1H), 4.12 (td, J = 8.2, 6.3 Hz, 1H), 3.73 (dt, J = 8.3, 6.9 Hz, 1H), 3.61 (ddd, J = 8.2, 7.3, 6.2 Hz, 1H), 2.81 (ddd, Hz, 1H), 2.81 (dddd, Hz, 1H), 2.81 (dddd, Hz, 1H), 2.81 (dddd, Hz, 1H), J = 10.9, 8.1, 3.9 Hz, 1H), 2.11 - 2.03 (m, 1H), 1.90 - 1.78 (m, 3H), 1.69 - 1.60 (m, 2H), 1.29 - 1.02(m, 6H), 0.81 (t, J = 7.0 Hz, 3H). ¹H NMR (400 MHz, Methylene Chloride- d_2 , minor diastereomer) δ 8.56 (dd, J = 4.7, 1.3 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.52 – 7.41 (m, 3H), 7.38 – 7.33 (m, 2H), 4.12 – 4.04 (m, 1H), 3.79 (dt, J = 8.2, 6.8 Hz, 1H), 3.71 (dt, J = 8.2, 6.8 Hz, 1H), 2.80 (ddd, J = 10.6, 8.4, 3.8 Hz, 1H), 2.02 – 1.93 (m, 1H), 1.91 – 1.80 (m, 1H), 1.80 – 1.72 (m, 2H), 1.67 – 1.59 (m, 1H), 1.52 – 1.42 (m, 1H), 1.28 - 1.07 (m, 6H), 0.82 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, Methylene Chloride*d*₂, major diastereomer) δ 164.4, 150.1, 148.4, 139.3, 129.5, 129.3, 127.6, 122.2, 119.8, 83.2, 68.2, 54.2, 32.5, 32.3, 30.7, 27.6, 26.3, 23.1, 14.4. ¹³C NMR (150 MHz, Methylene Chloride-d₂, minor diastereomer) δ 163.9, 150.2, 148.6, 139.1, 129.6, 129.4, 127.6, 122.2, 119.8, 83.2, 68.3, 54.1, 32.7, 32.6, 30.3, 27.7, 26.2, 23.2, 14.4. HRMS (EI, major diastereomer) m/z calcd. For C₂₁H₂₇NO [M]⁺: 309.2093, found : 309.2091. HRMS (EI, minor diastereomer) m/z calcd. For C₂₁H₂₇NO [M]⁺: 309.2093, found : 309.2090.

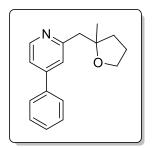

ethyl 4-(4-phenylpyridin-2-yl)-4-(tetrahydrofuran-2-yl)butanoate (2t). d.r. 2.5:1. Purified by flash chromatography on silica gel (EtOAc/n-hexane = 1:2). Prepared according to GP2. From (E)-1-((8ethoxy-8-oxooct-4-en-1-yl)oxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (76.7 mg, 0.15 mmol), compound 2t (35.6 mg, 70%) was obtained. Yellow oil (major diastereomer). Pale yellow oil (minor diastereomer). ¹H NMR (400 MHz, Methylene Chloride- d_2 , major diastereomer) δ 8.58 (dd, J =5.1, 0.9 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.52 – 7.41 (m, 3H), 7.40 – 7.35 (m, 2H), 4.14 (td, J = 8.2, 6.4 Hz, 1H), 4.04 (q, J = 7.1 Hz, 2H), 3.78 – 3.71 (m, 1H), 3.65 – 3.58 (m, 1H), 2.89 – 2.81 (m, 1H), 2.17 -1.99 (m, 5H), 1.89 - 1.80 (m, 2H), 1.72 - 1.64 (m, 1H), 1.18 (t, J = 7.1 Hz, 3H).¹H NMR (400 MHz, Methylene Chloride- d_2 , minor diastereomer) δ 8.57 (dd, J = 5.1, 0.9 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.53 -7.41 (m, 3H), 7.40 - 7.35 (m, 2H), 4.13 (ddd, J = 8.5, 7.5, 6.4 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.84 -3.78 (m, 1H), 3.73 (dt, J = 8.2, 6.8 Hz, 1H), 2.84 (ddd, J = 10.0, 8.3, 4.0 Hz, 1H), 2.36 - 2.26 (m, 1H), 2.21 – 2.08 (m, 3H), 1.82 – 1.73 (m, 2H), 1.70 – 1.63 (m, 1H), 1.53 – 1.42 (m, 1H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂, major diastereomer) δ 173.7, 163.1, 150.3, 148.7, 139.0, 129. 6, 129.4, 127.6, 122.5, 120.1, 82.8, 68.3, 60.7, 53.2, 32.6, 30.5, 27.3, 26.3, 14.6. ¹³C NMR (150 MHz, Methylene Chloride-d₂, minor diastereomer) & 173.9, 162.7, 150.4, 148.9, 138.9, 129.6, 129.5, 127.6, 122.4, 120.1, 82.9, 68.4, 60.6, 53.1, 32.8, 30.3, 28.0, 26.2, 14.6. HRMS (EI, major diastereomer) m/z calcd. For C₂₁H₂₅NO₃ [M]⁺: 339.1834, found : 339.1831. HRMS (EI, minor diastereomer) m/z calcd. For C₂₁H₂₅NO₃ [M]⁺: 339.1834, found : 339.1833.

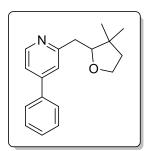

2-(1-oxaspiro[4.5]decan-6-yl)pyridine (2u). d.r. 2.0:1. Purified by flash chromatography on silica gel (EtOAc/n-hexane = 1:7). Prepared according to GP2. From 1-(3-(cyclohex-1-en-1-yl)propoxy)pyridin-1-ium 4-methylbenzenesulfonate (58.4 mg, 0.15 mmol), compound 2u (13.9 mg, 43%) was obtained. Colorless oil (major diastereomer). Colorless oil (minor diastereomer). ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 8.50 - 8.38 (m, 1H), 7.57 (td, J = 7.7, 1.9 Hz, 1H), 7.40 (dd, J = 8.1, 1.2 Hz, 1H), 7.10 (ddd, *J* = 7.4, 4.8, 1.2 Hz, 1H), 3.62 (td, *J* = 7.9, 6.6 Hz, 1H), 3.51 (td, *J* = 7.7, 4.9 Hz, 1H), 2.83 (dd, *J* = 13.0, 3.6 Hz, 1H), 2.02 (qd, J = 13.0, 3.7 Hz, 1H), 1.84 (ddd, J = 12.5, 8.6, 5.5 Hz, 1H), 1.82 - 1.75 (m, 2H), 1.72 (dt, *J* = 13.1, 3.8 Hz, 1H), 1.69 – 1.64 (m, 1H), 1.62 – 1.55 (m, 2H), 1.51 – 1.33 (m, 3H), 0.85 - 0.77 (m, 1H). ¹H NMR (600 MHz, Chloroform-d, minor diastereomer) δ 8.54 (d, J = 4.6 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.13 – 7.07 (m, 1H), 3.62 (q, *J* = 6.8 Hz, 1H), 3.12 (q, J = 6.8 Hz, 1H), 2.95 (dd, J = 12.5, 3.5 Hz, 1H), 2.14 - 2.07 (m, 1H), 1.99 (qd, J = 12.9, 3.5 Hz, 10.9 (qd, J = 12.9, 3.5 Hz)1H), 1.92 – 1.86 (m, 1H), 1.84 – 1.75 (m, 3H), 1.64 – 1.54 (m, 3H), 1.44 – 1.31 (m, 2H), 0.96 – 0.89 (m, 1H). 13 C NMR (150 MHz, Methylene Chloride- d_2 , major diastereomer) δ 164.3, 148.6, 136.0, 123.9, 121.7, 83.8, 68.3, 55.1, 39.1, 36.2, 30.0, 26.6, 26.1, 23.4. ¹³C NMR (150 MHz, Chloroform-d, minor diastereomer) & 162.2, 148.4, 135.0, 126.0, 121.1, 86.0, 67.3, 53.5, 40.2, 29.1, 29.1, 26.2, 25.7, 24.9. HRMS (EI, major diastereomer) m/z calcd. For C₁₄H₁₉NO [M]⁺: 217.1467, found : 217.1465. HRMS (EI, minor diastereomer) m/z calcd. For $C_{14}H_{19}NO [M]^+$: 217.1467, found : 217.1464.

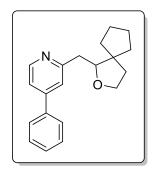

2-((tetrahydrofuran-2-yl)methyl)pyridine (2v). Purified by flash chromatography on silica gel (Acetone/*n*-hexane = 1:4). Prepared according to **GP2**. From 1-(pent-4-en-1-yloxy)pyridin-1-ium 4-methylbenzenesulfonate (50.3 mg, 0.15 mmol), compound **2v** (10.4 mg, 43%) was obtained. Colorless oil. ¹H NMR (600 MHz, Methylene Chloride-*d*₂) δ 8.5 (d, *J* = 4.9 Hz, 1H), 7.6 (tt, *J* = 7.7, 1.5 Hz, 1H), 7.2 (d, *J* = 7.7 Hz, 1H), 7.1 – 7.1 (m, 1H), 4.2 (p, *J* = 6.8 Hz, 1H), 3.8 (q, *J* = 7.3 Hz, 1H), 3.7 (q, *J* = 7.5 Hz, 1H), 2.9 (qd, *J* = 13.6, 6.5 Hz, 2H), 2.0 – 1.9 (m, 1H), 1.9 – 1.8 (m, 2H), 1.6 (dq, *J* = 12.1, 7.9 Hz, 1H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 160.1, 149.6, 136.5, 124.2, 121.7, 79.3, 68.2, 44.8, 31.7, 26.1. HRMS (ESI) m/z calcd. For C₁₀H₁₃NO [M+H]⁺: 164.1070, found : 164.1061.

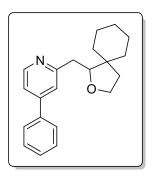

2-phenyl-6-((tetrahydrofuran-2-yl)methyl)pyridine (2w). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:4). Prepared according to **GP2**. From 1-(pent-4-en-1-yloxy)-2-phenylpyridin-1-ium 4-methylbenzenesulfonate (61.7 mg, 0.15 mmol), compound **2w** (12.5 mg, 35%) was obtained. Colorless oil. ¹H NMR (600 MHz, Methylene Chloride-*d*₂) δ 8.06 – 8.00 (m, 2H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.59 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.46 (dd, *J* = 8.3, 6.8 Hz, 2H), 7.43 – 7.38 (m, 1H), 7.17 (dd, *J* = 7.6, 0.9 Hz, 1H), 4.32 (p, *J* = 6.8 Hz, 1H), 3.87 (td, *J* = 7.9, 6.2 Hz, 1H), 3.70 (td, *J* = 8.0, 6.3 Hz, 1H), 3.07 (dd, *J* = 13.6, 7.2 Hz, 1H), 3.00 (dd, *J* = 13.6, 5.9 Hz, 1H), 2.03 (dddd, *J* = 11.8, 8.5, 6.5, 5.0 Hz, 1H), 1.96 – 1.83 (m, 2H), 1.69 (ddt, *J* = 12.1, 8.9, 7.4 Hz, 1H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 159.9, 157.0, 140.2, 137.4, 129.3, 129.1, 127.4, 122.7, 118.3, 79.4, 68.3, 45.0, 31.8, 26.2. HRMS (EI) m/z calcd. For C₁₆H₁₇NO [M]⁺: 239.1310, found : 239.1311.

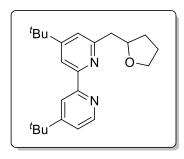

4-phenyl-2-((**tetrahydrofuran-2-yl**)**methyl**)**pyridine** (**2x**). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 2:1). Prepared according to **GP2**. From 1-(pent-4-en-1-yloxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (61.7 mg, 0.15 mmol), compound **2x** (20.1 mg, 56%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.54 (dd, *J* = 5.2, 0.8 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.52 – 7.41 (m, 4H), 7.37 (dd, *J* = 5.2, 1.9 Hz, 1H), 4.32 – 4.23 (m, 1H), 3.90 – 3.82 (m, 1H), 3.73 – 3.66 (m, 1H), 3.05 (dd, *J* = 13.6, 7.3 Hz, 1H), 2.99 (dd, *J* = 13.6, 5.7 Hz, 1H), 2.05 – 1.96 (m, 1H), 1.94 – 1.83 (m, 2H), 1.69 – 1.61 (m, 1H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 160.7, 150.1, 148.9, 139.0, 129.6, 129.4, 127.6, 122.1, 119.8, 79.3, 68.3, 44.9, 31.7, 26.2. HRMS (EI) m/z calcd. For C₁₆H₁₇NO [M]⁺: 239.1310, found : 239.1307.

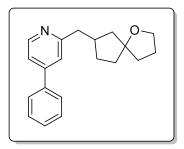

methyl 2-((tetrahydrofuran-2-yl)methyl)isonicotinate (2y). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:1). Prepared according to **GP2**. From 4-(methoxycarbonyl)-1-(pent-4-en-1-yloxy)pyridin-1-ium 4-methylbenzenesulfonate (59.0 mg, 0.15 mmol), compound **2y** (20.6 mg, 62%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.7 (ddt, J = 3.9, 1.9, 1.0 Hz, 1H), 7.8 (tt, J = 2.2, 1.2 Hz, 1H), 7.7 (dq, J = 5.2, 1.7 Hz, 1H), 4.3 (dtd, J = 8.9, 7.3, 5.6 Hz, 1H), 3.9 (dd, J = 2.3, 1.5 Hz, 3H), 3.9 – 3.8 (m, 1H), 3.8 – 3.7 (m, 1H), 3.1 – 3.0 (m, 2H), 2.1 – 1.9 (m, 1H), 2.0 – 1.7 (m, 2H), 1.7 – 1.5 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.0, 160.7, 150.1, 137.7, 123.1, 120.6, 78.7, 68.1, 52.7, 44.3, 31.3, 25.7. HRMS (EI) m/z calcd. For C₁₂H₁₅NO [M]⁺: 221.1052, found : 221.1054.

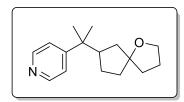

2-((tetrahydrofuran-2-yl)methyl)-4-(trifluoromethyl)pyridine (2z). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:2). Prepared according to **GP2**. From 1-(pent-4-en-1-yloxy)-4-(trifluoromethyl)pyridin-1-ium 4-methylbenzenesulfonate (60.5 mg, 0.15 mmol), compound **2z** (22.5 mg, 65%) was obtained. Colorless oil. ¹H NMR (600 MHz, Methylene Chloride-*d*₂) δ 8.70 (d, *J* = 5.1 Hz, 1H), 7.47 (s, 1H), 7.35 (d, *J* = 5.1 Hz, 1H), 4.24 (p, *J* = 6.6 Hz, 1H), 3.84 (qd, *J* = 8.0, 7.3, 1.5 Hz, 1H), 3.69 (qd, *J* = 8.0, 7.2, 1.5 Hz, 1H), 3.04 (d, *J* = 6.4 Hz, 2H), 2.01 (dddd, *J* = 13.6, 8.2, 6.6, 3.5 Hz, 1H), 1.94 – 1.80 (m, 2H), 1.66 – 1.56 (m, 1H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 161.9, 150.7, 138.6 (q, *J* = 33.8 Hz), 123.7 (q, *J* = 273.0 Hz), 119.8 (q, *J* = 3.7 Hz), 117.3 (q, *J* = 3.6 Hz), 78.9, 68.4, 44.8, 31.8, 26.2. ¹⁹F NMR (564 MHz, Methylene Chloride-*d*₂) δ -65.1. HRMS (EI) m/z calcd. For C₁₁H₁₂F₃NO [M]⁺: 231.0871, found : 231.0871.


1-((tetrahydrofuran-2-yl)methyl)isoquinoline (2aa). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:4). Prepared according to **GP2**. From 2-(pent-4-en-1-yloxy)isoquinolin-2-ium 4-methylbenzenesulfonate (57.8 mg, 0.15 mmol), compound **2aa** (23.0 mg, 72%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.42 (d, *J* = 5.7 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 5.7 Hz, 1H), 4.43 (p, *J* = 6.6 Hz, 1H), 3.88 (q, *J* = 7.2 Hz, 1H), 3.68 (q, *J* = 7.4 Hz, 1H), 3.61 (dd, *J* = 13.9, 6.7 Hz, 1H), 3.34 (dd, *J* = 13.9, 6.3 Hz, 1H), 2.02 (ddd, *J* = 14.1, 11.6, 5.5 Hz, 1H), 1.97 – 1.82 (m, 2H), 1.72 (dq, *J* = 11.5, 7.4 Hz, 1H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 160.0, 142.4, 136.7, 130.3, 128.1, 127.7, 127.5, 126.2, 119.8, 79.3, 68.3, 41.6, 31.9, 26.2. HRMS (EI) m/z calcd. For C₁₄H₁₅NO [M]⁺: 213.1154, found : 213.1156.

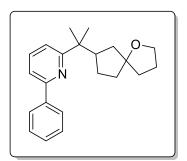

2-((2-methyltetrahydrofuran-2-yl)methyl)-4-phenylpyridine (**2ab**). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:4). Prepared according to **GP2**. From 1-((4-methylpent-4-en-1-yl)oxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (63.8 mg, 0.15 mmol), compound **2ab** (17.8 mg, 47%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Acetonitrile- d_3) δ 8.5 (dd, J = 5.3, 0.8 Hz, 1H), 7.8 – 7.7 (m, 2H), 7.6 (dd, J = 1.8, 0.8 Hz, 1H), 7.6 – 7.4 (m, 4H), 3.9 – 3.6 (m, 2H), 3.0 (s, 2H), 2.1 (ddd, J = 12.1, 8.4, 6.2 Hz, 1H), 2.0 – 1.9 (m, 1H), 1.8 (dddt, J = 12.1, 8.3, 7.2, 6.3 Hz, 1H), 1.6 (ddd, J = 12.0, 8.3, 6.4 Hz, 1H), 1.2 (s, 3H). ¹³C NMR (150 MHz, Acetonitrile- d_3) δ 160.8, 150.1, 148.7, 139.3, 130.1, 130.0, 127.9, 123.6, 120.1, 83.4, 67.9, 49.4, 37.1, 26.9, 26.7. HRMS (EI) m/z calcd. For C₁₇H₁₉NO [M]⁺: 253.1467, found : 253.1464.


2-((3,3-dimethyltetrahydrofuran-2-yl)methyl)-4-phenylpyridine (**2ac).** Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:3). Prepared according to **GP2**. From 1-((3,3-dimethylpent-4-en-1-yl)oxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (65.9 mg, 0.15 mmol), compound **2ac** (29.7 mg, 74%) was obtained. Pale yellow oil. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 8.55 (d, J = 5.2 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.51 – 7.47 (m, 3H), 7.46 – 7.42 (m, 1H), 7.36 (dd, J = 5.1, 1.8 Hz, 1H), 3.90 – 3.82 (m, 2H), 3.73 (td, J = 8.7, 4.4 Hz, 1H), 2.93 (dd, J = 13.9, 2.9 Hz, 1H), 2.84 (dd, J = 13.8, 9.9 Hz, 1H), 1.85 – 1.74 (m, 2H), 1.10 (s, 3H), 1.05 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 161.5, 150.1, 148.8, 139.1, 129.5, 129.4, 127.6, 122.1, 119.7, 86.9, 65.8, 41.7, 41.1, 39.7, 25.6, 22.2. HRMS (EI) m/z calcd. For C₁₈H₂₁NO [M]⁺: 267.1623, found : 267.1623.

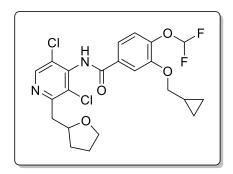

2-((2-oxaspiro[4.4]nonan-1-yl)methyl)-4-phenylpyridine (2ad). Purified by flash chromatography on silica gel (Et₂O/CH₂Cl₂ = 2:1). Prepared according to **GP2**. From 4-phenyl-1-(2-(1-vinylcyclopentyl)ethoxy)pyridin-1-ium 4-methylbenzenesulfonate (69.8 mg, 0.15 mmol), compound **2ad** (28.6 mg, 65%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 8.54 (dd, *J* = 5.2, 0.8 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.52 – 7.40 (m, 4H), 7.35 (dd, *J* = 5.2, 1.8 Hz, 1H), 4.08 (dd, *J* = 10.1, 2.9 Hz, 1H), 3.85 (ddd, *J* = 8.3, 7.7, 6.7 Hz, 1H), 3.74 (td, *J* = 8.2, 5.9 Hz, 1H), 2.96 (dd, *J* = 13.7, 2.8 Hz, 1H), 2.84 (dd, *J* = 13.7, 10.1 Hz, 1H), 1.92 – 1.79 (m, 2H), 1.78 – 1.57 (m, 8H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 161.5, 150.1, 148.8, 139.1, 129.5, 129.4, 127.6, 122.2, 119.7, 85.2, 66.4, 53.3, 40.8, 40.2, 36.8, 32.9, 25.4, 24.6. HRMS (EI) m/z calcd. For C₂₀H₂₃NO [M]⁺: 293.1780, found : 293.1778.


2-((2-oxaspiro[4.5]decan-1-yl)methyl)-4-phenylpyridine (2ae). Purified by flash chromatography on silica gel (Et₂O/CH₂Cl₂ = 2:1). Prepared according to **GP2**. From 4-phenyl-1-(2-(1-vinylcyclohexyl)ethoxy)pyridin-1-ium 4-methylbenzenesulfonate (71.9 mg, 0.15 mmol), compound **2ae** (29.1 mg, 63%) was obtained. Pale yellow oil. ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 8.54 (dd, J = 5.2, 0.8 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.52 – 7.40 (m, 4H), 7.35 (dd, J = 5.2, 1.8 Hz, 1H), 3.87 (td, J = 8.3, 6.6 Hz, 1H), 3.81 (dd, J = 10.3, 2.7 Hz, 1H), 3.70 (td, J = 8.6, 5.8 Hz, 1H), 2.94 (dd, J = 13.7, 2.8 Hz, 1H), 2.83 (dd, J = 13.8, 10.3 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.71 – 1.36 (m, 11H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 161.7, 150.1, 148.8, 139.1, 129.5, 129.4, 127.6, 122.2, 119.7, 87.6, 66.0, 45.5, 39.6, 36.1, 35.8, 31.0, 27.1, 24.5, 23.6. HRMS (EI) m/z calcd. For C₂₁H₂₅NO [M]⁺: 307.1936, found : 307.1936.

4,4'-di-tert-butyl-6-((**tetrahydrofuran-2-yl**)**methyl**)-**2,2'-bipyridine** (**2af**). Purified by flash chromatography on alumina basic (EtOAc/*n*-hexane = 1:19). Prepared according to **GP2**. From 4,5'-ditert-butyl-1-(pent-4-en-1-yloxy)-[2,2'-bipyridin]-1-ium 4-methylbenzenesulfonate (78.7 mg, 0.15 mmol), compound **2af** (24.8 mg, 47%) was obtained. Colorless gum. ¹H NMR (400 MHz, Methylene Chloride-*d*₂) δ 8.5 (dd, *J* = 5.2, 0.8 Hz, 1H), 8.5 (dd, *J* = 2.0, 0.8 Hz, 1H), 8.3 (d, *J* = 1.8 Hz, 1H), 7.3 (dd, *J* = 5.2, 2.0 Hz, 1H), 7.2 (d, *J* = 1.8 Hz, 1H), 4.4 (p, *J* = 6.7 Hz, 1H), 3.9 (ddd, *J* = 8.3, 7.3, 6.1 Hz, 1H), 3.7 (td, *J* = 7.8, 6.4 Hz, 1H), 3.1 (dd, *J* = 13.6, 6.6 Hz, 1H), 3.0 (dd, *J* = 13.6, 6.4 Hz, 1H), 2.0 (ddd, *J* = 11.6, 8.4, 6.4, 5.1 Hz, 1H), 2.0 – 1.8 (m, 2H), 1.7 (ddt, *J* = 11.8, 8.8, 7.2 Hz, 1H), 1.4 (s, 9H), 1.4 (s, 9H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 161.5, 161.2, 159.2, 157.3, 156.3, 149.4, 121.1 (d, *J* = 2.9 Hz), 118.6, 116.2, 79.5, 68.3, 45.0, 35.4, 35.4, 31.7, 31.0, 30.9, 26.2. HRMS (EI) m/z calcd. For C₂₃H₃₂N₂O [M]⁺: 352.2515, found : 352.2512.

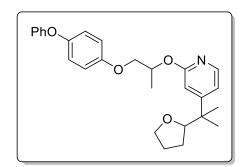


2-((1-oxaspiro[4.4]nonan-2-yl)methyl)-4-phenylpyridine (4a). d.r. 1:1. Purified by flash chromatography on silica gel (EtOAc/n-hexane = 1:5). Prepared according to GP2. From 1-((4-1))methyleneoct-7-en-1-yl)oxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (44.2 mg, 0.15 mmol), compound 4a (21.2 mg, 48%) was obtained. Colorless oil (diastereomer A). Colorless oil (diastereomer B). ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 8.53 (dd, J = 5.2, 0.8 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.52 - 7.40 (m, 3H), 7.37 (dd, J = 1.8, 0.8 Hz, 1H), 7.33 (dd, J = 5.2, 1.9 Hz, 1H), 3.82 - 3.66 (m, 2H), 2.89 (d, J = 7.5 Hz, 2H), 2.42 (dddd, J = 15.6, 8.8, 7.6, 1.1 Hz, 1H), 1.91 - 1.71 (m, 7H), 1.61 - 1.46(m, 3H). ¹H NMR (400 MHz, Methylene Chloride- d_2 , diastereomer B) δ 8.52 (dd, J = 5.2, 0.9 Hz, 1H), 7.68 - 7.64 (m, 2H), 7.52 - 7.40 (m, 3H), 7.38 (dd, J = 1.9, 0.8 Hz, 1H), 7.34 (dd, J = 5.2, 1.8 Hz, 1H), 3.81 - 3.61 (m, 2H), 2.95 - 2.75 (m, 2H), 2.58 (ddt, J = 10.1, 8.6, 7.4 Hz, 1H), 1.92 - 1.78 (m, 6H), 1.76 – 1.71 (m, 2H), 1.41 – 1.28 (m, 2H). ¹³C NMR (150 MHz, Methylene Chloride-d₂, diastereomer A) & 162.9, 150.2, 148.8, 139.1, 129.6, 129.4, 127.5, 121.5, 119.4, 90.9, 67.1, 45.4, 45.2, 39.5, 38.5, 37.7, 31.6, 26.3. ¹³C NMR (150 MHz, Methylene Chloride-d₂) δ 162.8, 150.1, 148.8, 139.2, 129.6, 129.4, 127.5, 121.3, 119.5, 91.1, 66.9, 45.4, 45.2, 39.7, 38.4, 37.1, 31.6, 26.5. HRMS (EI, diastereomer A) m/z calcd. For C₂₀H₂₃NO [M]⁺: 293.1780, found : 293.1779. HRMS (EI, diastereomer B) m/z calcd. For C₂₀H₂₃NO [M]⁺: 293.1780, found : 293.1781.

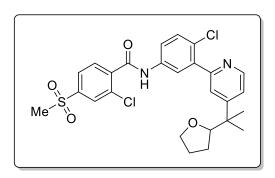


4-(2-(1-oxaspiro[4.4]nonan-7-yl)propan-2-yl)pyridine (**4b**). d.r. 1:1. Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:1). Prepared according to **GP2**. From 1-((8-methyl-4-methylenenon-7-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (37.0 mg, 0.15 mmol), compound **4b** (19.5 mg, 53%) was obtained. Colorless oil (diastereomer A). Colorless oil (diastereomer B). ¹H NMR (600 MHz, Methylene Chloride-*d*₂, diastereomer A) δ 8.47 (s, 2H), 7.28 (d, *J* = 5.0 Hz, 2H), 3.68 (h, *J* = 8.2 Hz, 2H), 2.17 (p, *J* = 8.8 Hz, 1H), 1.89 – 1.78 (m, 2H), 1.75 – 1.66 (m, 3H), 1.52 – 1.38 (m, 5H), 1.28 (s, 3H), 1.27 (s, 3H). ¹H NMR (600 MHz, Methylene Chloride-*d*₂, diastereomer B)

δ 8.46 (d, J = 5.1 Hz, 2H), 7.25 (d, J = 5.2 Hz, 2H), 3.68 (dq, J = 26.4, 7.6 Hz, 2H), 2.49 – 2.38 (m, 1H), 1.82 (p, J = 7.1 Hz, 2H), 1.74 – 1.64 (m, 3H), 1.61 – 1.52 (m, 3H), 1.34 – 1.24 (m, 8H). ¹³C NMR (150 MHz, Methylene Chloride- d_2 , diastereomer A) δ 160.1, 149.4, 122.3, 90.2, 67.0, 49.9, 40.6, 40.0, 38.5, 37.6, 26.6, 26.3, 25.2, 24.8. ¹³C NMR (150 MHz, Methylene Chloride- d_2 , diastereomer B) δ 159.2, 150.0, 122.2, 90.8, 67.0, 49.8, 40.3, 39.7, 38.3, 36.5, 26.4, 25.2, 25.2. HRMS (EI, diastereomer A) m/z calcd. For C₁₆H₂₃NO [M]⁺: 245.1780, found : 245.1779. HRMS (EI, diastereomer B) m/z calcd. For C₁₆H₂₃NO [M]⁺: 245.1780, found : 245.1784.



2-(2-(1-oxaspiro[4.4]nonan-7-yl)propan-2-yl)-6-phenylpyridine (4c). d.r. 1:1. Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:7). Prepared according to GP2. From 1-((8-methyl-4-methylenenon-7-en-1-yl)oxy)-2-phenylpyridin-1-ium 4-methylbenzenesulfonate (48.4 mg, 0.15 mmol), compound 4c (28.8 mg, 60%) was obtained. Colorless oil (diastereomer A). Colorless oil (diastereomer B). ¹H NMR (600 MHz, Methylene Chloride- d_2 , diastereomer A) δ 8.55 (dd, J = 5.1, 2.3Hz, 1H), 8.01 (d, J = 7.5 Hz, 2H), 7.71 (s, 1H), 7.50 – 7.45 (m, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.25 – 7.20 (m, 1H), 3.74 - 3.65 (m, 2H), 2.24 (p, J = 9.0 Hz, 1H), 1.84 (h, J = 6.3 Hz, 2H), 1.77 - 1.68 (m, 3H), 1.54 - 1.45 (m, 5H), 1.35 - 1.32 (m, 6H). ¹H NMR (600 MHz, Methylene Chloride- d_2 , diastereomer B) δ 8.55 (dd, J = 5.4, 2.4 Hz, 1H), 8.00 (d, J = 7.6 Hz, 2H), 7.72 (s, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.41 (t, J = 7.4 Hz, 1H), 7.25 – 7.20 (m, 1H), 3.69 (dq, J = 23.7, 7.2 Hz, 2H), 2.51 (p, J = 8.8 Hz, 1H), 1.82 (p, J = 7.3 Hz, 2H), 1.76 – 1.66 (m, 3H), 1.65 – 1.53 (m, 3H), 1.37 – 1.24 (m, 8H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂, diastereomer A) δ 160.2, 157.5, 149.9, 140.6, 129.2, 127.5, 120.8, 118.8, 90.2, 67.0, 50.0, 40.6, 40.1, 38.5, 37.7, 26.6, 26.3, 25.3, 24.9. ¹³C NMR (150 MHz, Methylene Chloride-*d*₂, diastereomer B) δ 160.1, 157.5, 149.8, 140.6, 129.2, 129.1, 127.5, 120.9, 118.9, 90.8, 67.0, 49.8, 40.4, 40.0, 38.3, 36.6, 26.5, 26.4, 25.3, 25.3. HRMS (EI, diastereomer A) m/z calcd. For C₂₂H₂₇NO [M]⁺: 321.2093, found : 321.2092. HRMS (EI, diastereomer B) m/z calcd. For C₂₂H₂₇NO [M]⁺: 321.2093, found : 321.2095.

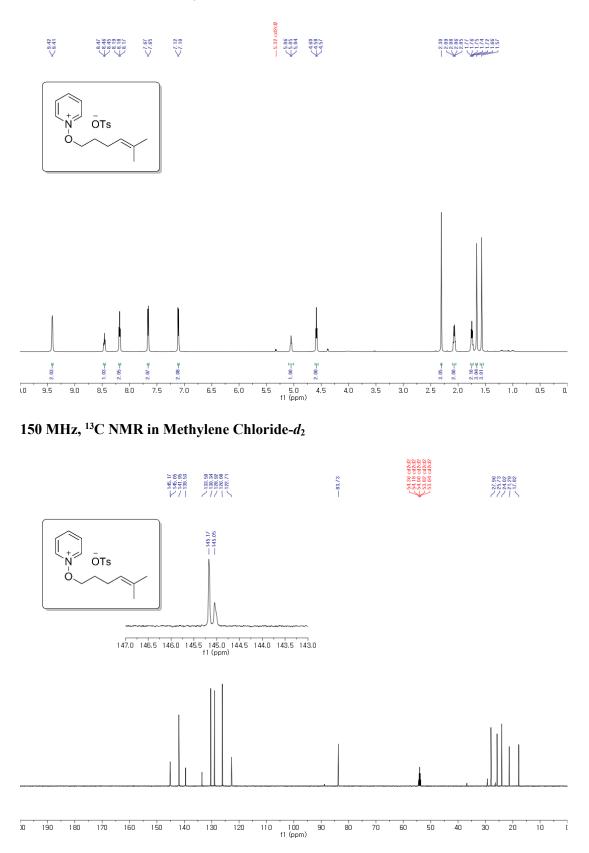


3-(cyclopropylmethoxy)-N-(3,5-dichloro-2-((tetrahydrofuran-2-yl)methyl)pyridin-4-yl)-4-

(difluoromethoxy)benzamide (4d). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:3). Prepared according to **GP2**. From 3,5-dichloro-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)benzamido)-1-(pent-4-en-1-yloxy)pyridin-1-ium 4-methylbenzenesulfonate (98.9 mg, 0.15 mmol), compound **4d** (59.2 mg, 81%) was obtained. Pale yellow oil. ¹H NMR (600 MHz, Methylene Chloride- d_2) δ 8.47 (s, 1H), 8.13 (s, 1H), 7.56 (d, J = 2.9 Hz, 1H), 7.49 (dd, J = 8.0, 2.8 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 6.76 (t, J = 75.1 Hz, 1H), 4.40 (p, J = 7.0 Hz, 1H), 3.96 (d, J = 6.9 Hz, 2H), 3.80 (q, J = 7.5 Hz, 1H), 3.61 (q, J = 7.5 Hz, 1H), 3.22 (dd, J = 14.4, 7.9 Hz, 1H), 3.03 (dd, J = 14.3, 5.2 Hz, 1H), 2.08 – 1.98 (m, 1H), 1.95 – 1.89 (m, 1H), 1.85 (dt, J = 12.8, 7.3 Hz, 1H), 1.66 (dq, J = 15.5, 8.4, 7.9 Hz, 1H), 1.32 (dq, J = 12.6, 5.9 Hz, 1H), 0.67 (d, J = 7.7 Hz, 2H), 0.37 (d, J = 5.0 Hz, 2H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 164.62, 157.10, 151.26, 147.51, 144.18, 140.48, 131.95, 129.31, 127.80, 122.40, 120.79, 116.60 (t, J = 260.0 Hz), 114.61, 77.92, 74.78, 68.29, 41.93, 31.87, 26.12, 10.50, 3.56. ¹⁹F NMR (564 MHz, Methylene Chloride- d_2) δ -82.31 (d, J = 75.1 Hz). HRMS (EI) m/z calcd. For C₂₂H₂₂Cl₂F₂N₂O4 [M]⁺: 486.0925, found : 486.0922.

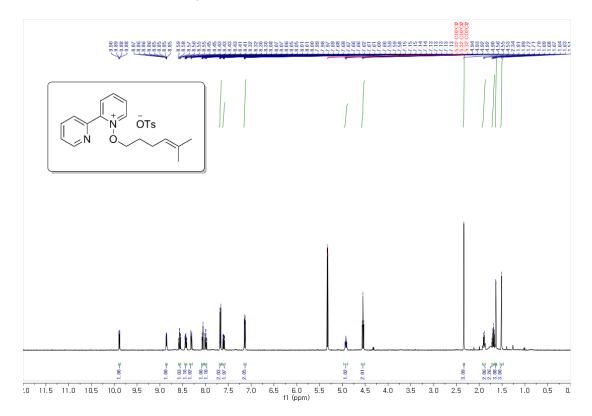
2-((1-(4-phenoxyphenoxy)propan-2-yl)oxy)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (4e). d.r. 1:1. Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 1:7). Prepared according to **GP2**. From 1-((5-methylhex-4-en-1-yl)oxy)-2-((1-(4-phenoxyphenoxy)propan-2-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (90.9 mg, 0.15 mmol), compound **4e** (28.6 mg, 44%) was obtained. Colorless oil. ¹H NMR (600 MHz, Methylene Chloride-*d*₂) δ 8.03 (d, *J* = 5.5 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.98 – 6.92 (m, 7H), 6.75 (s, 1H), 5.56 (h, *J* = 6.1 Hz, 1H), 4.17 (dd, J = 10.0, 5.4 Hz, 1H), 4.08 (dd, J = 10.0, 4.6 Hz, 1H), 3.90 (t, J = 7.3 Hz, 1H), 3.75 – 3.61 (m, 2H), 1.82 – 1.65 (m, 3H), 1.49 – 1.39 (m, 4H), 1.27 (d, J = 3.1 Hz, 6H). ¹³C NMR (150 MHz, Methylene Chloride- d_2) δ 164.01, 160.51, 159.10, 155.87, 150.87, 146.52, 130.18, 123.02, 121.28, 118.15, 116.63, 116.24, 110.12, 86.78, 71.73, 69.76, 69.03, 41.84, 27.65, 26.67, 24.55, 24.33, 17.32. HRMS (ESI) m/z calcd. For C₂₀H₂₅NO [M+H]⁺: 434.2326, found : 434.2327.

2-chloro-N-(4-chloro-3-(4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridin-2-yl)phenyl)-4-

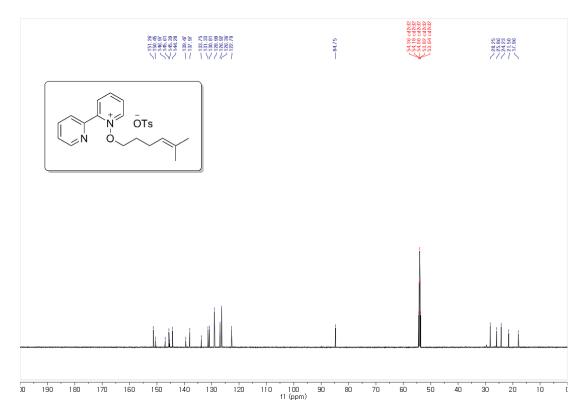

(methylsulfonyl)benzamide (4f). Purified by flash chromatography on silica gel (EtOAc/*n*-hexane = 2:1). Prepared according to GP2. From 2-(2-chloro-5-(2-chloro-4-(methylsulfonyl)benzamido)phenyl)-1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (105.8 mg, 0.15 mmol), compound 4f (52.8 mg, 66%) was obtained. White Solid. ¹H NMR (600 MHz, Methylene Chloride-*d*₂) δ 10.55 (s, 1H), 8.16 (d, *J* = 5.4 Hz, 1H), 8.10 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.83 (d, *J* = 1.7 Hz, 1H), 7.68 – 7.63 (m, 3H), 7.48 (d, *J* = 8.7 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.20 (dd, *J* = 5.4, 1.8 Hz, 1H), 3.85 (dd, *J* = 8.4, 6.2 Hz, 1H), 3.72 – 3.56 (m, 2H), 2.94 (s, 3H), 1.83 – 1.70 (m, 2H), 1.68 – 1.60 (m, 1H), 1.45 – 1.35 (m, 1H), 1.29 (s, 3H), 1.28 (s, 3H). ¹³C NMR (150 MHz, Methylene Chloride-*d*₂) δ 164.6, 157.9, 155.7, 148.5, 143.1, 141.5, 139.6, 138.1, 132.6, 131.2, 130.2, 129.3, 127.5, 126.3, 124.9, 123.2, 122.0, 121.8, 86.6, 69.0, 44.8, 42.0, 27.7, 26.6, 25.0, 23.7. HRMS (EI) m/z calcd. For C₂₆H₂₆Cl₂N₂O₄S [M]⁺: 532.0990, found : 532.0986.

Appendix I

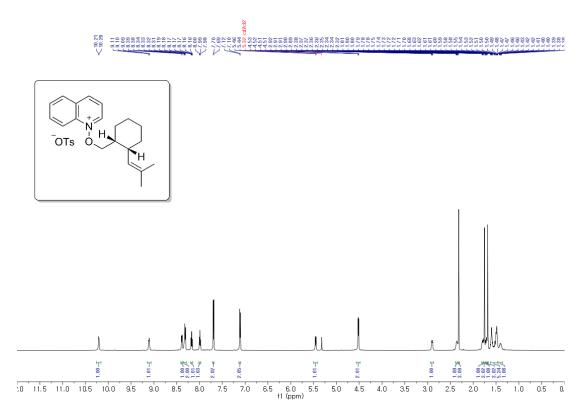
Spectral Copies of ¹H, ¹³C and ¹⁹F NMR Data Obtained in this Study


1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (1a).

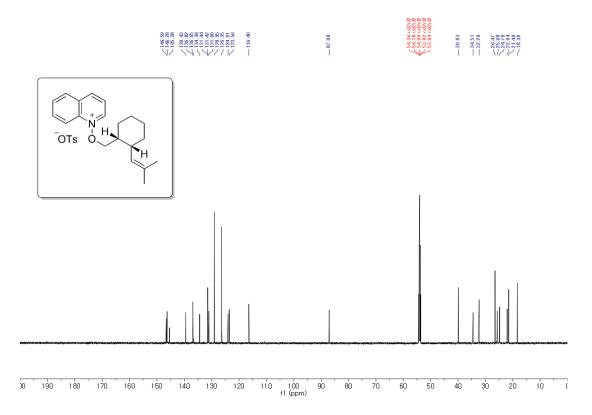
600 MHz, ¹H NMR in Methylene Chloride-*d*₂



1-((5-methylhex-4-en-1-yl)oxy)-[2,2'-bipyridin]-1-ium 4-methylbenzenesulfonate (1h).

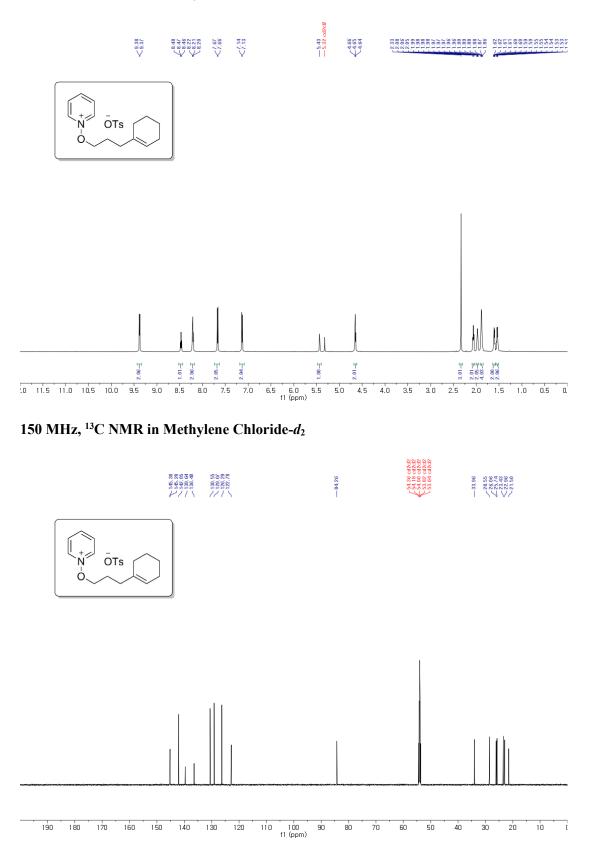


150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

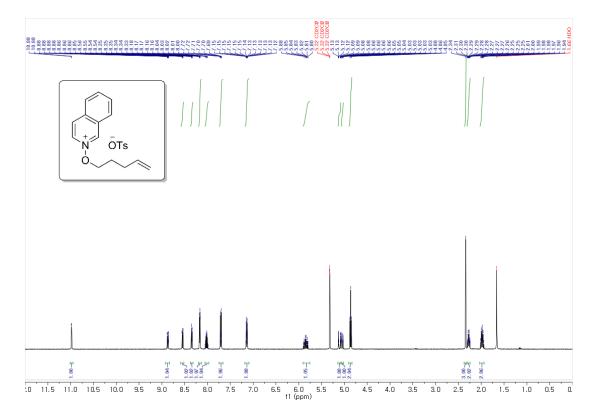


1-(((1*R*,2*R*)-2-(2-methylprop-1-en-1-yl)cyclohexyl)methoxy)quinolin-1-ium methylbenzenesulfonate (10).

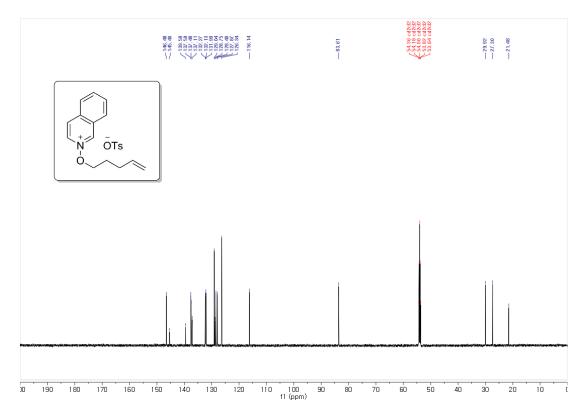
600 MHz, ¹H NMR in Methylene Chloride-*d*₂



150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

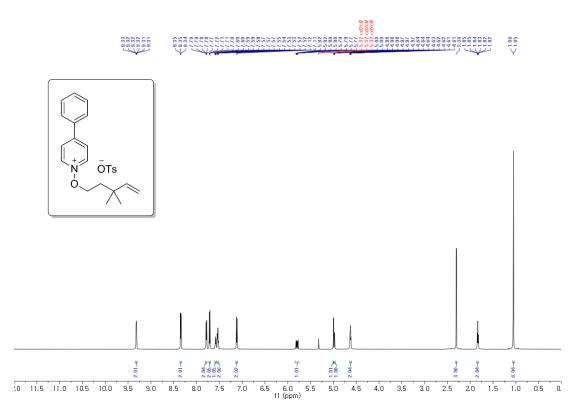

1-(3-(cyclohex-1-en-1-yl)propoxy)pyridin-1-ium 4-methylbenzenesulfonate (1u).

600 MHz, ¹H NMR in Methylene Chloride-*d*₂

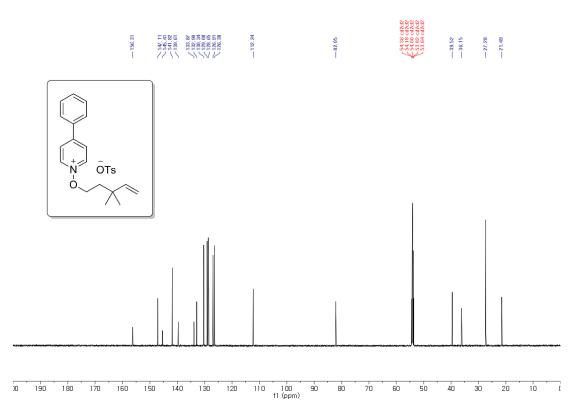


2-(pent-4-en-1-yloxy)isoquinolin-2-ium 4-methylbenzenesulfonate (1aa).

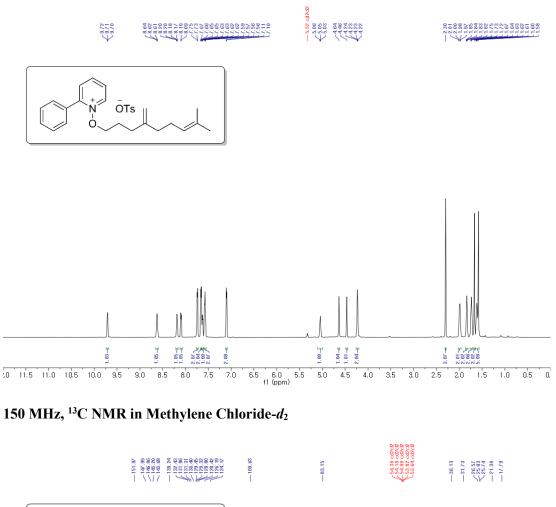
400 MHz, ¹H NMR in Methylene Chloride-*d*₂

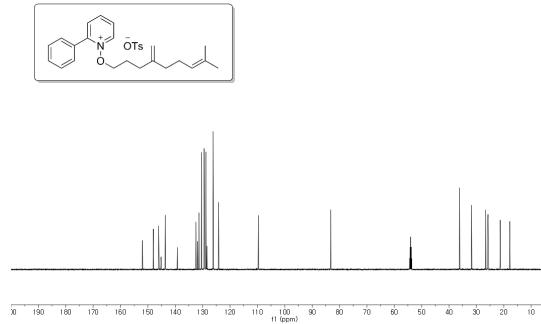


150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



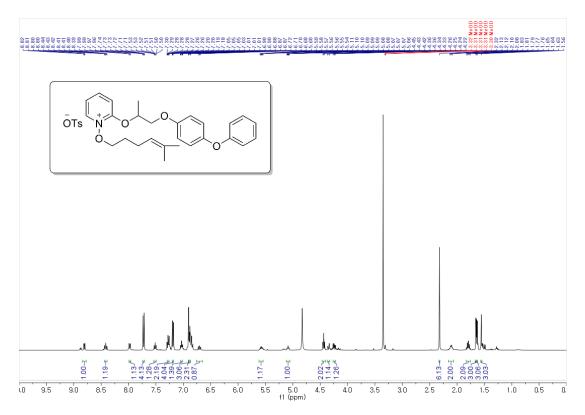
1-((3,3-dimethylpent-4-en-1-yl)oxy)-4-phenylpyridin-1-ium 4-methylbenzenesulfonate (1ac).

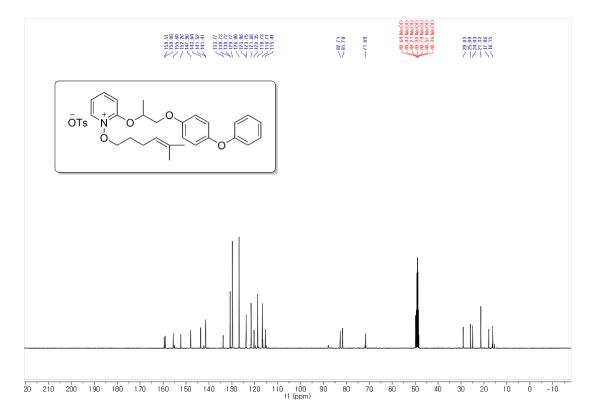



150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

1-((8-methyl-4-methylenenon-7-en-1-yl)oxy)-2-phenylpyridin-1-ium 4-methylbenzenesulfonate (3c).

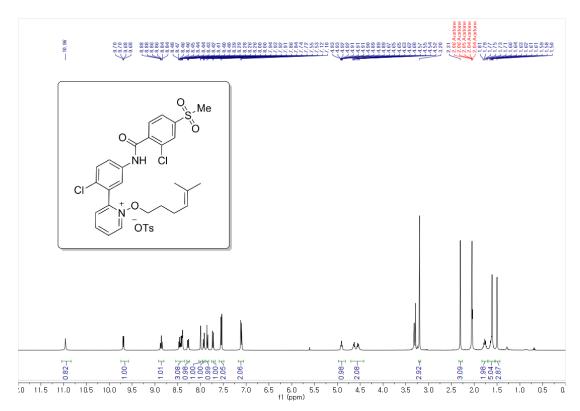
600 MHz, ¹H NMR in Methylene Chloride-*d*₂



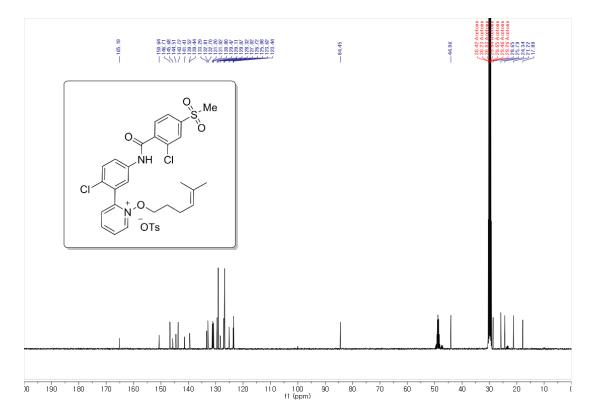

Ċ

1-((5-methylhex-4-en-1-yl)oxy)-2-((1-phenoxypropan-2-yl)oxy)pyridin-1-ium methylbenzenesulfonate (3e).

400 MHz, ¹H NMR in Methanol-d₄

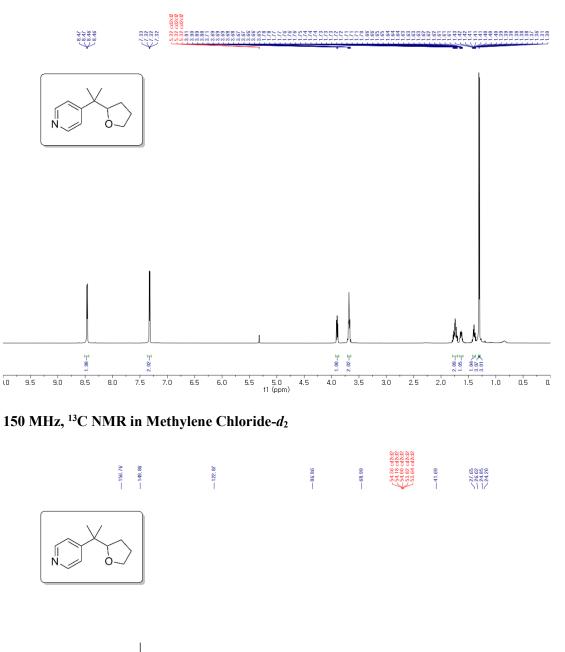


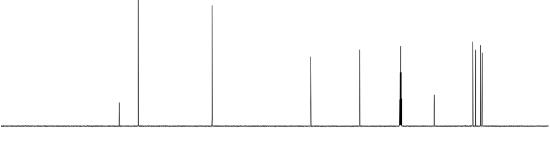
100 MHz, ¹³C NMR in Methanol-d₄



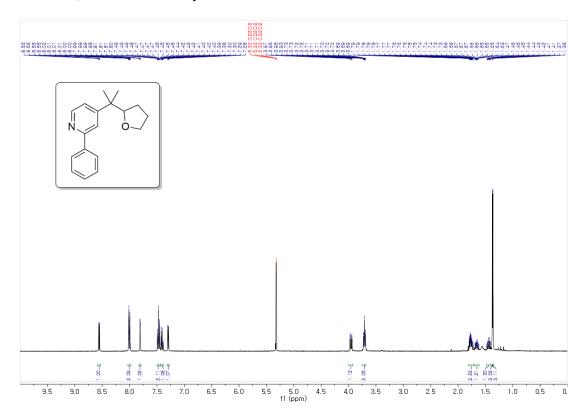
2-(2-chloro-5-(2-chloro-4-(methylsulfonyl)benzamido)phenyl)-1-((5-methylhex-4-en-1-yl)oxy)pyridin-1-ium 4-methylbenzenesulfonate (3f).

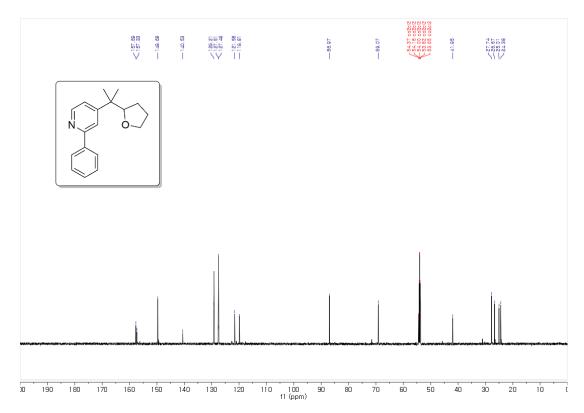
400 MHz, ¹H NMR in Acetone-*d*₆



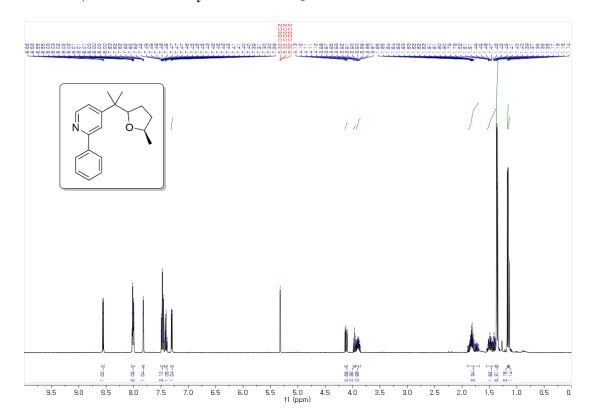

100 MHz, ¹³C NMR in Acetone-d₆

4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2a).


600 MHz, ¹H NMR in Methylene Chloride-*d*₂

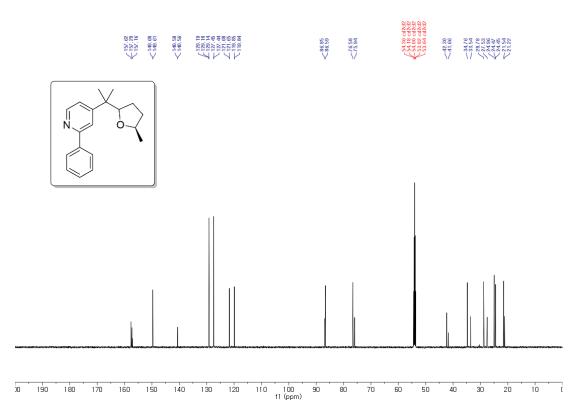

110 100 f1 (ppm) C

2-phenyl-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2b).

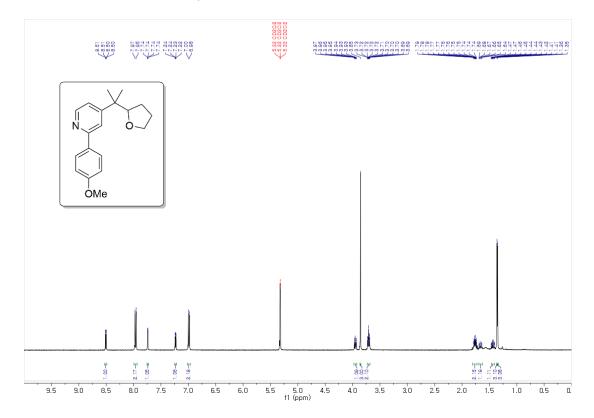


400 MHz, ¹H NMR in Methylene Chloride-*d*₂

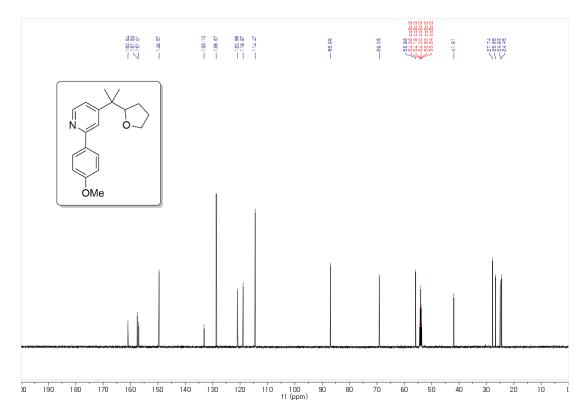
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



4-(2-((5R)-5-methyltetrahydrofuran-2-yl)propan-2-yl)-2-phenylpyridine (2c). d.r. 2.0:1.

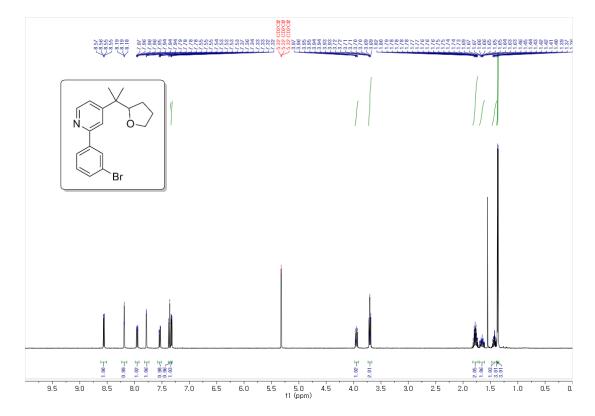

400 MHz, ¹H NMR in Methylene Chloride-*d*₂

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



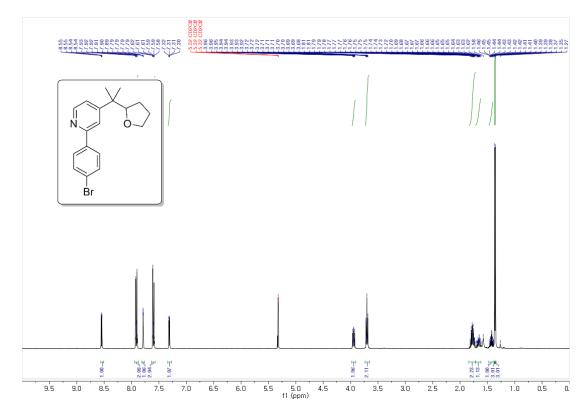
2-(4-methoxyphenyl)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2d).

400 MHz, ¹H NMR in Methylene Chloride-*d*₂

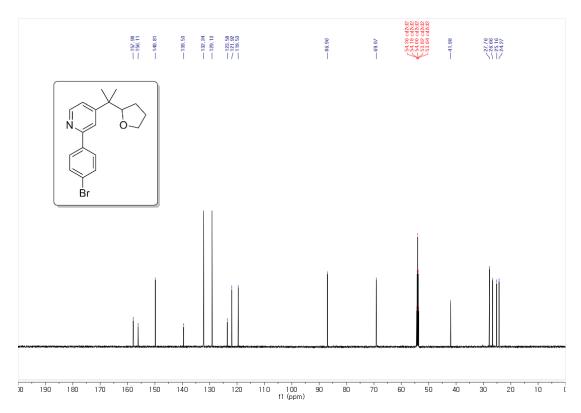


150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

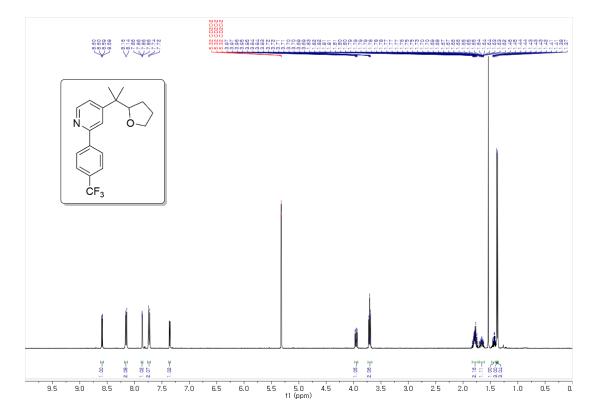
2-(3-bromophenyl)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (2e).



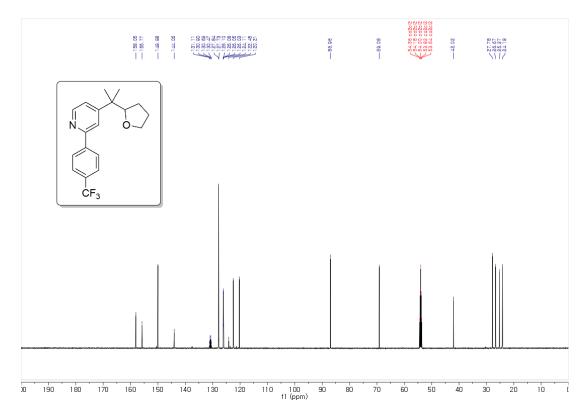
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



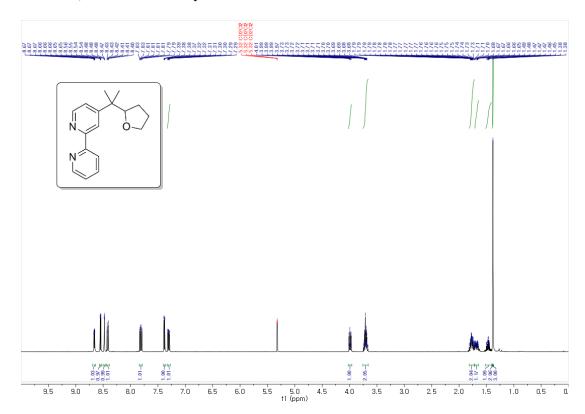
2-(4-bromophenyl)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine(2f).



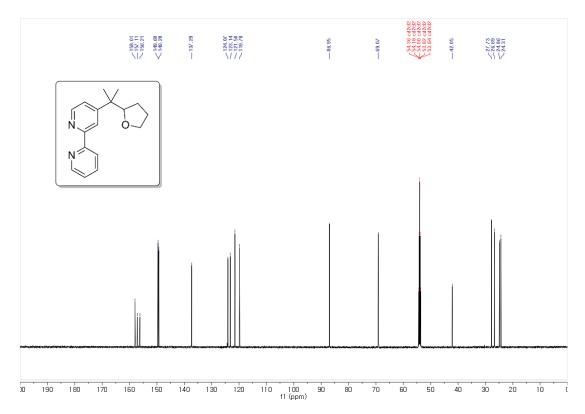
¹³C NMR (150 MHz, Methylene Chloride-*d*₂)



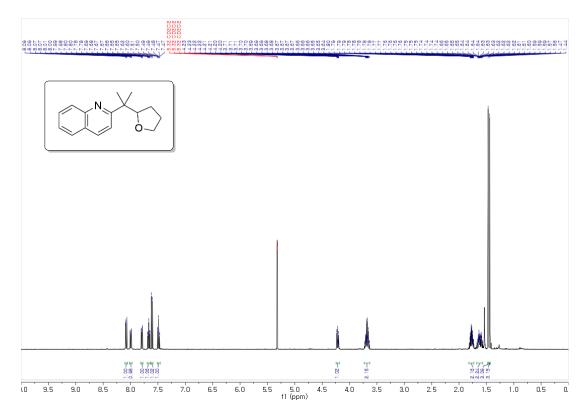
4-(2-(tetrahydrofuran-2-yl)propan-2-yl)-2-(4-(trifluoromethyl)phenyl)pyridine (2g).


400 MHz, ¹H NMR in Methylene Chloride-*d*₂

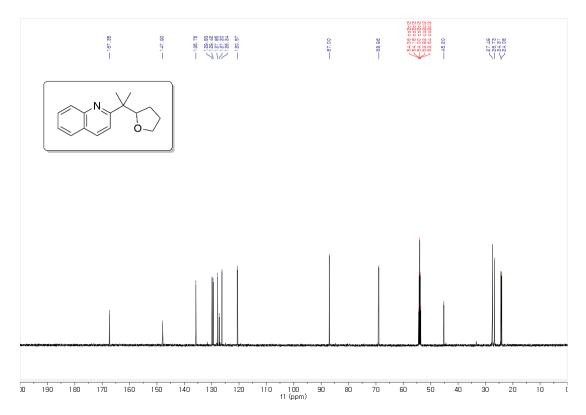
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



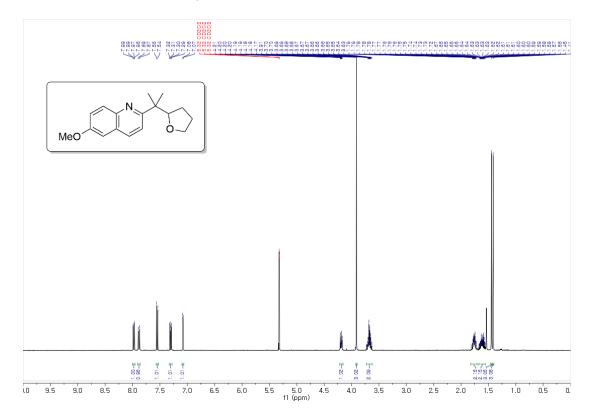
4-(2-(tetrahydrofuran-2-yl)propan-2-yl)-2,2'-bipyridine (2h).


400 MHz, ¹H NMR in Methylene Chloride-*d*₂

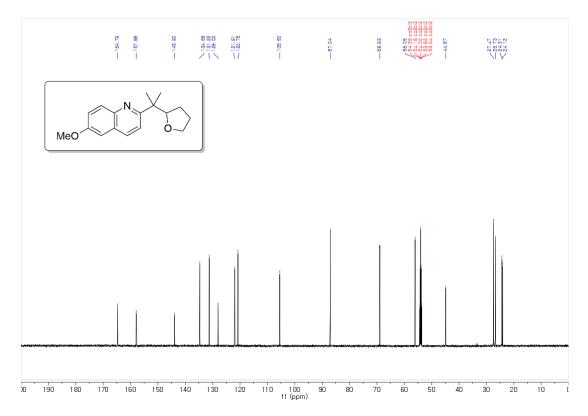
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



2-(2-(tetrahydrofuran-2-yl)propan-2-yl)quinolone (2i).

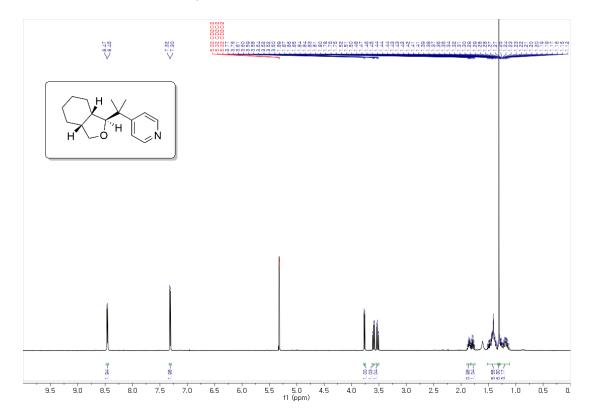


150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

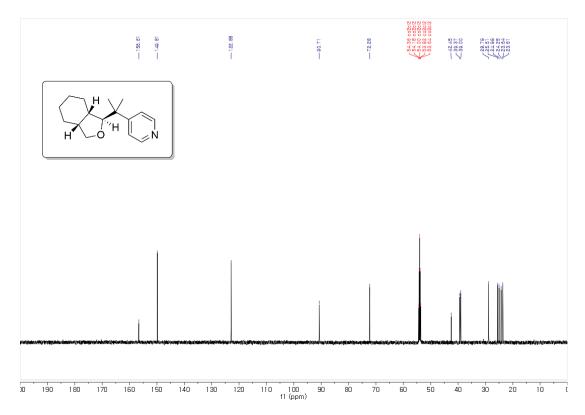


6-methoxy-2-(2-(tetrahydrofuran-2-yl)propan-2-yl)quinolone (2j).

400 MHz, ¹H NMR in Methylene Chloride-*d*₂

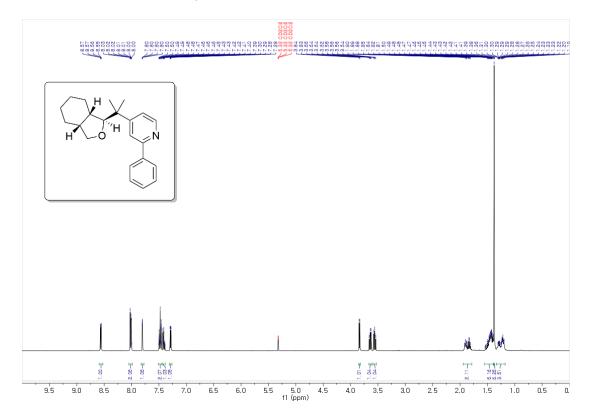


150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

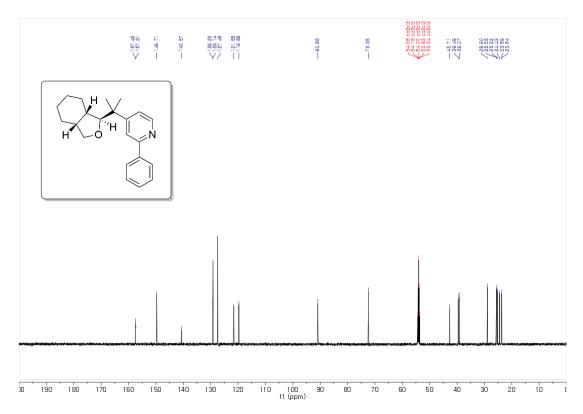


rel-4-(2-((1*S*,3a*R*,7a*S*)-octahydroisobenzofuran-1-yl)propan-2-yl)pyridine (2k).

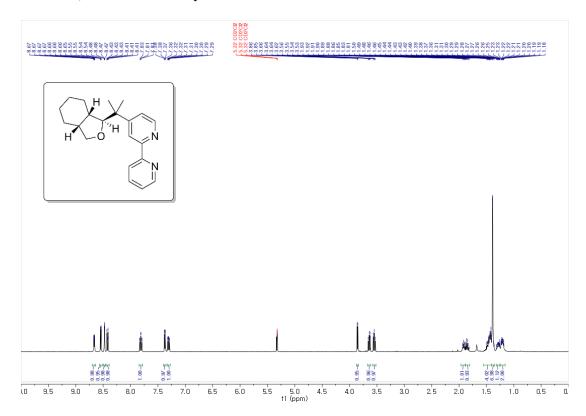
400 MHz, ¹H NMR in Methylene Chloride-*d*₂



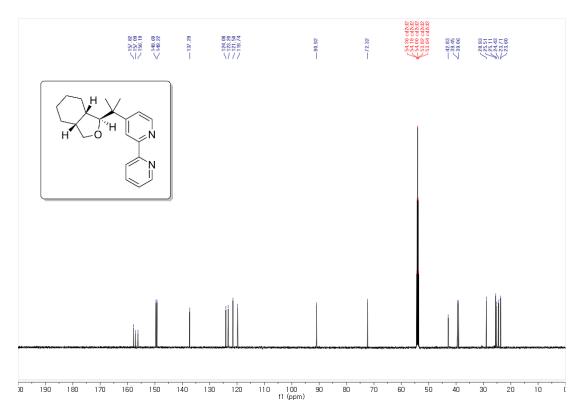
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



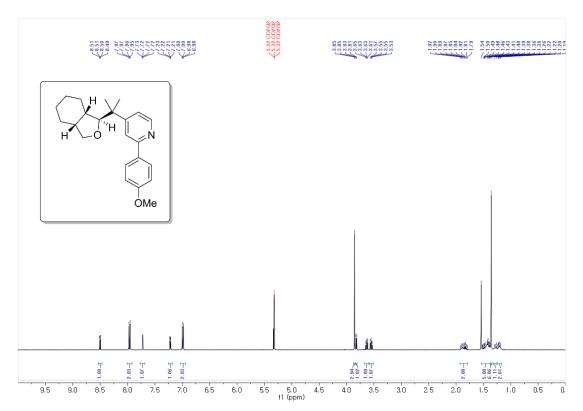
rel-4-(2-((1S,3aR,7aS)-octahydroisobenzofuran-1-yl)propan-2-yl)-2-phenylpyridine (2l).



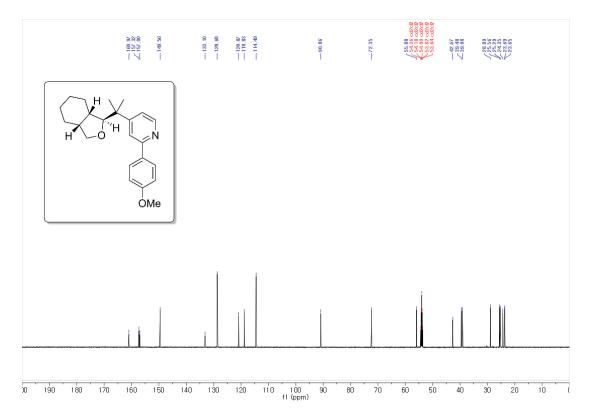
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



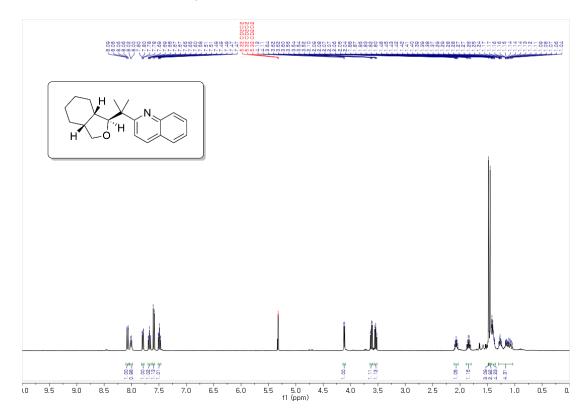
rel-4-(2-((1S,3aR,7aS)-octahydroisobenzofuran-1-yl)propan-2-yl)-2,2'-bipyridine (2m).


400 MHz, ¹H NMR in Methylene Chloride-*d*₂

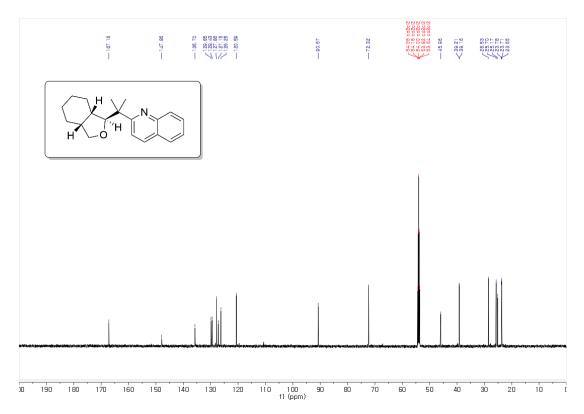
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂



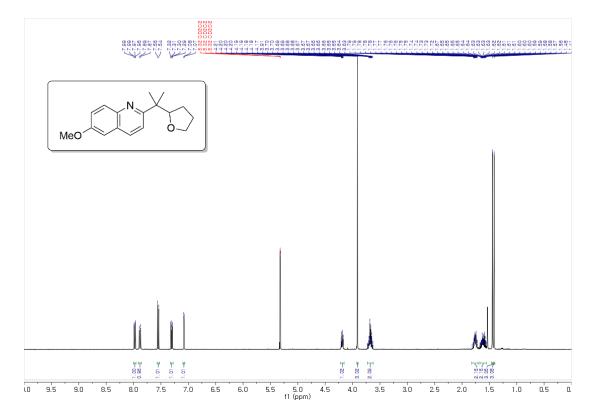
rel-2-(4-methoxyphenyl)-4-(2-((1S,3aR,7aS)-octahydroisobenzofuran-1-yl)propan-2-yl)pyridine (2n).


400 MHz, ¹H NMR in Methylene Chloride-*d*₂

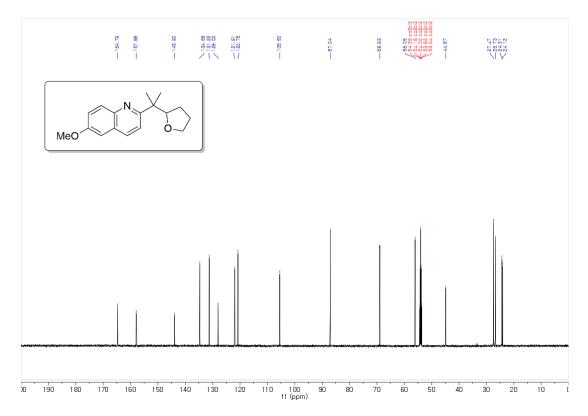
150 MHz, ¹³C NMR in Methylene Chloride-d₂



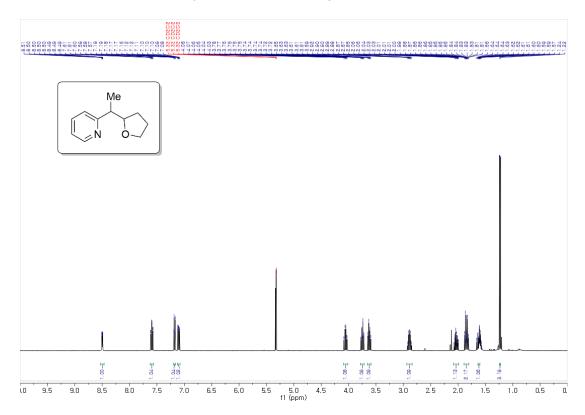
rel-2-(2-((1*S*,3*aR*,7*aS*)-octahydroisobenzofuran-1-yl)propan-2-yl)quinolone (20).



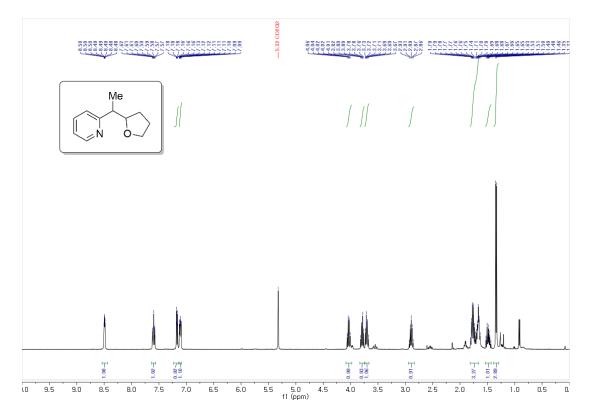
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

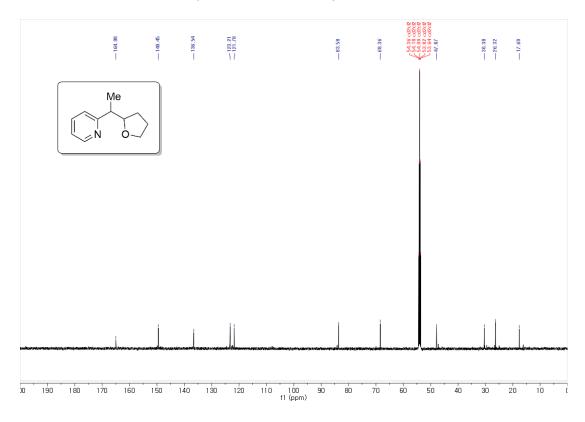


rel-6-methoxy-2-(2-((1S,3aR,7aS)-octahydroisobenzofuran-1-yl)propan-2-yl)quinolone (2p).

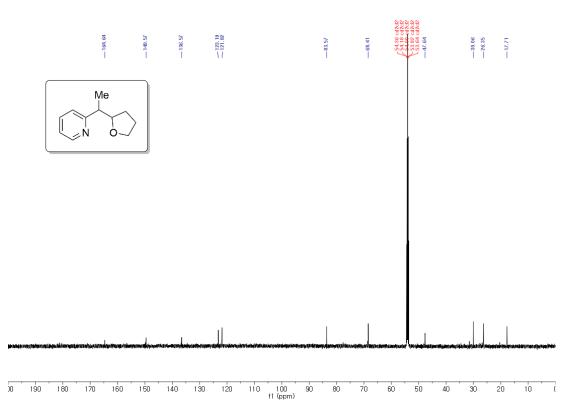


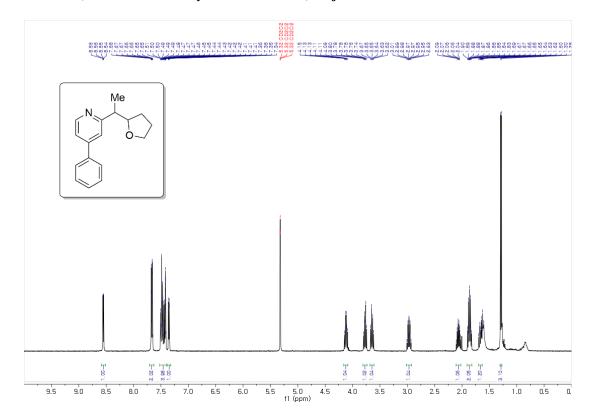
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂




2-(1-(tetrahydrofuran-2-yl)ethyl)pyridine (2q).

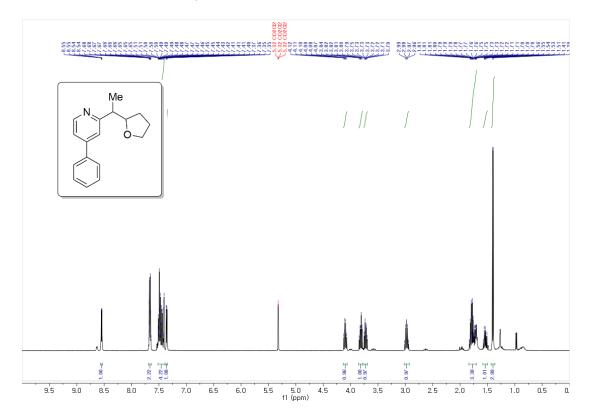
400 MHz, ¹H NMR in Methylene Chloride-*d*₂, major diastereomer

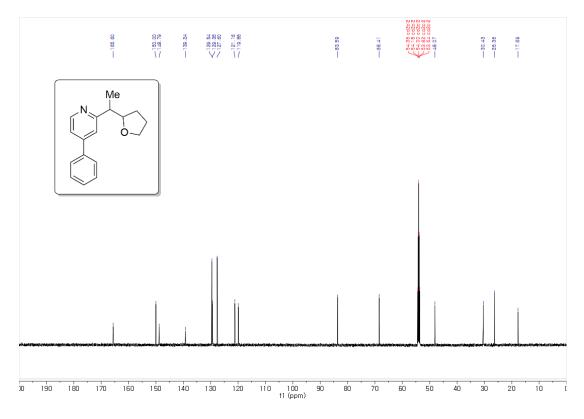

400 MHz, ¹H NMR in Methylene Chloride-*d*₂, minor diastereomer



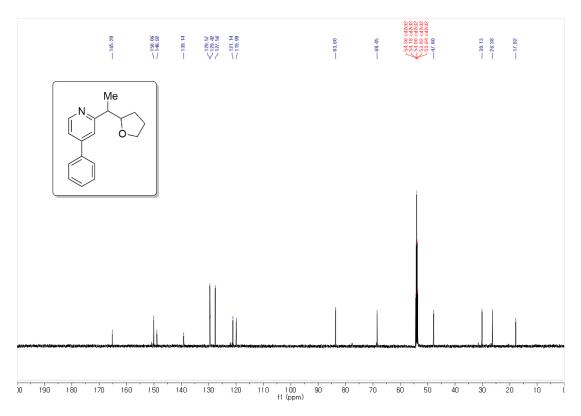
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, major diastereomer

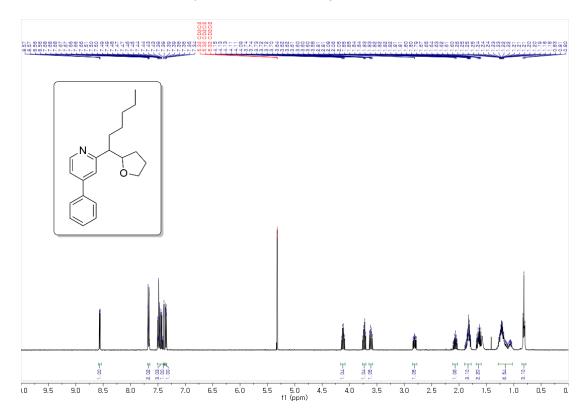
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, minor diastereomer



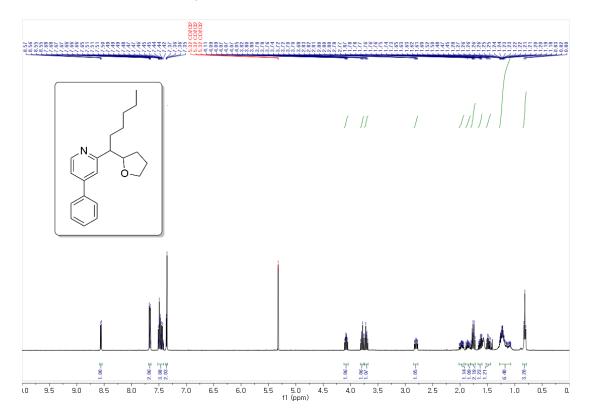

4-phenyl-2-(1-(tetrahydrofuran-2-yl)ethyl)pyridine (2r).

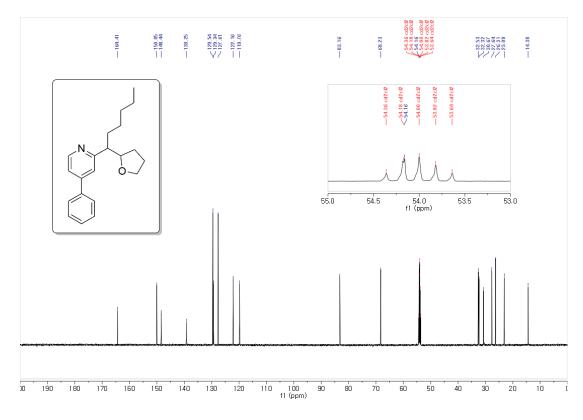
400 MHz, ¹H NMR in Methylene Chloride-*d*₂, major diastereomer

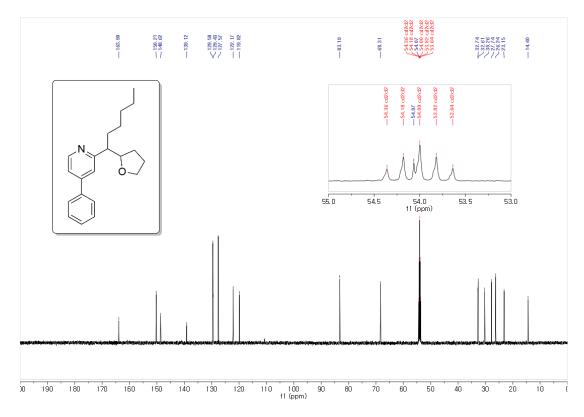

400 MHz, ¹H NMR in Methylene Chloride-*d*₂, minor diastereomer

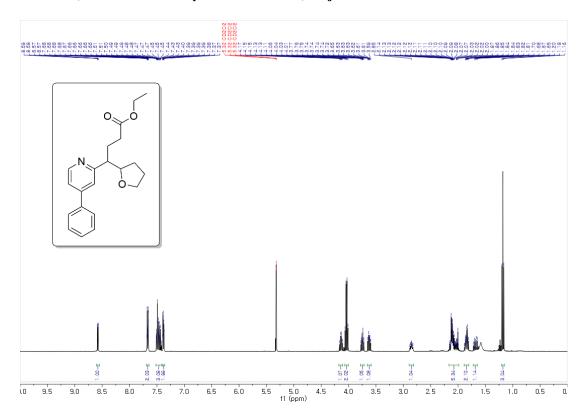

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, major diastereomer

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, minor diastereomer



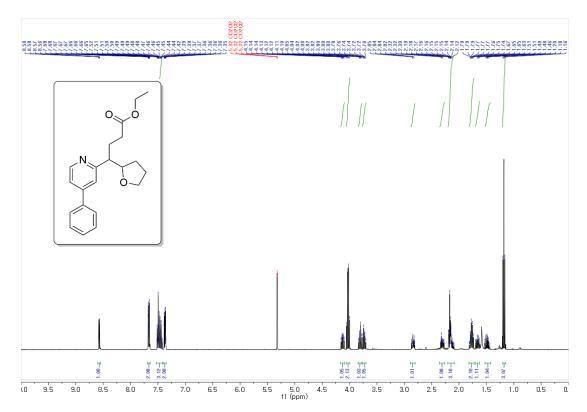

4-phenyl-2-(1-(tetrahydrofuran-2-yl)hexyl)pyridine (2s).

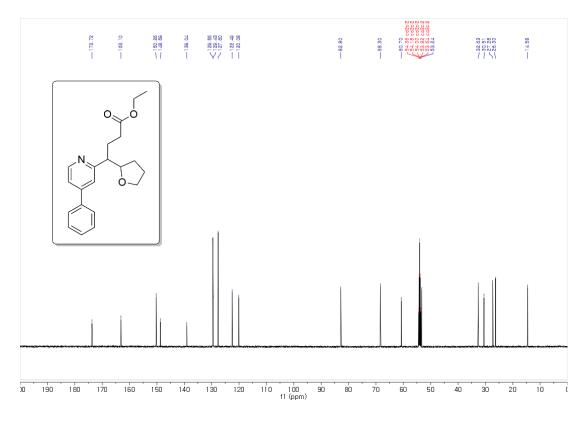

400 MHz, ¹H NMR in Methylene Chloride-*d*₂, minor diastereomer



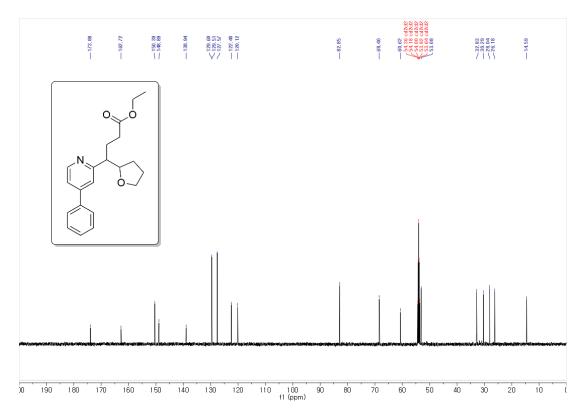
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, major diastereomer

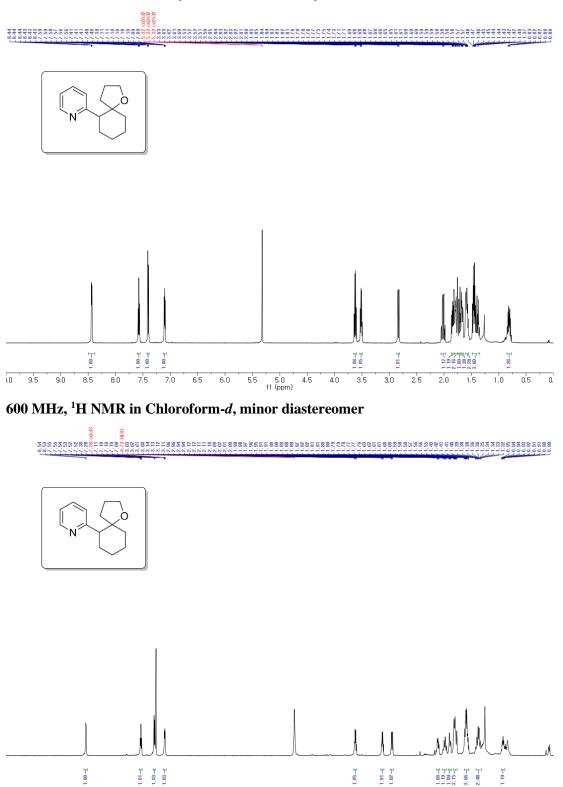
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, minor diastereomer



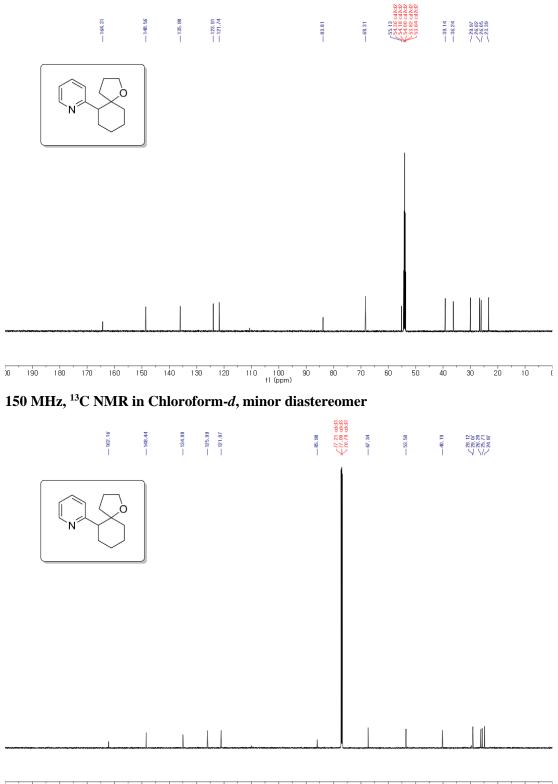

ethyl 4-(4-phenylpyridin-2-yl)-4-(tetrahydrofuran-2-yl)butanoate (2t).

400 MHz, ¹H NMR in Methylene Chloride-*d*₂, major diastereomer


400 MHz, ¹H NMR in Methylene Chloride-*d*₂, minor diastereomer

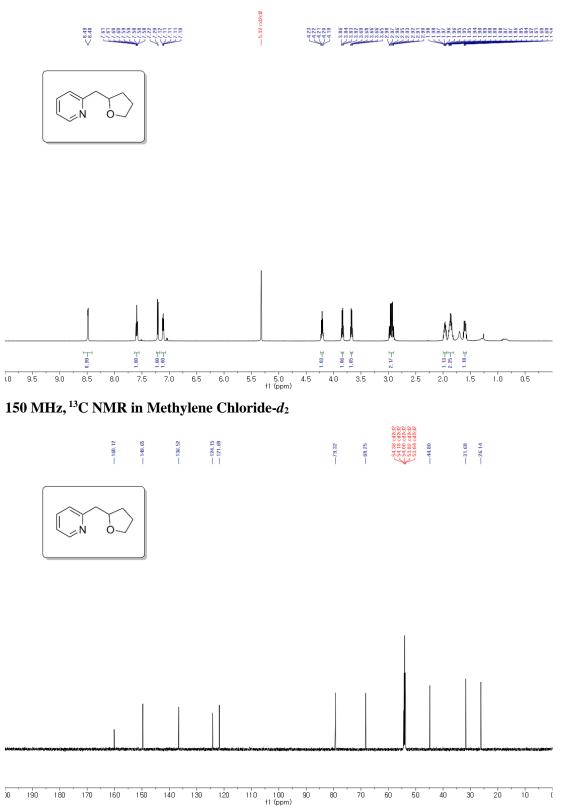

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, major diastereomer

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, minor diastereomer



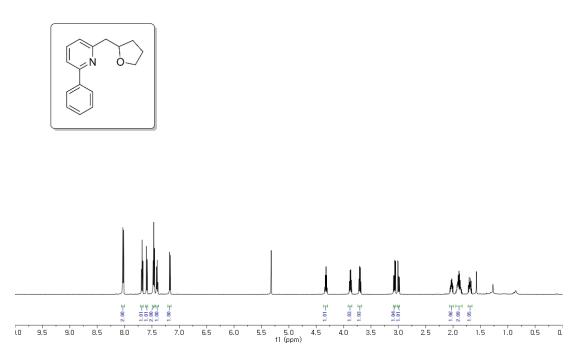
2-(1-oxaspiro[4.5]decan-6-yl)pyridine (2u).

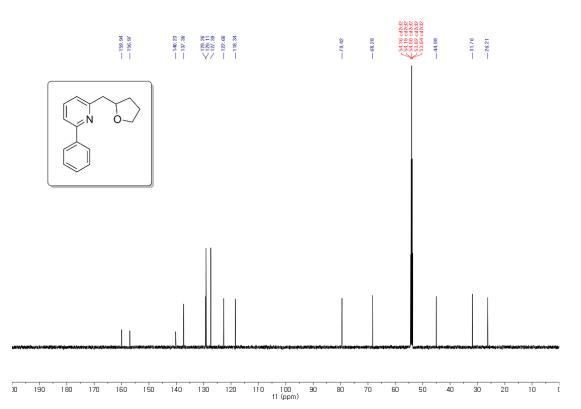
600 MHz, ¹H NMR in Methylene Chloride-*d*₂, major diastereomer


5.0 f1 (ppm) 8.5 7.5 5.5 10 9.5 9.0 8.0 7.0 6.5 6.0 4.5 4.0 3.0 2.0 1.0 0.5 0. 3.5 2.5 1.5

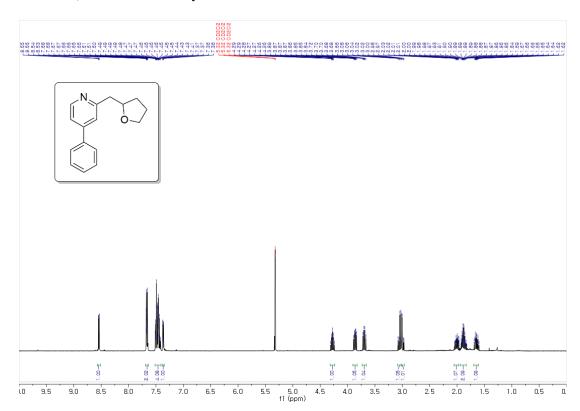
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, major diastereomer

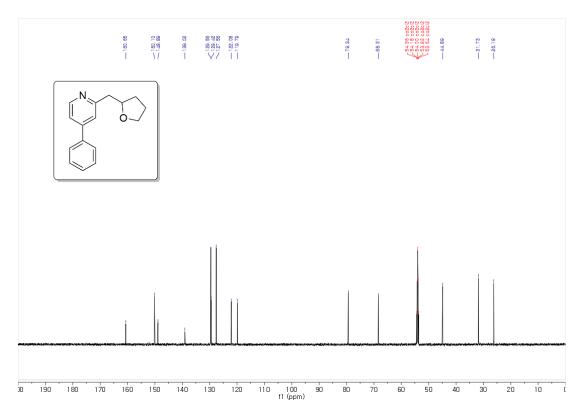
0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1(ppm)


2-((tetrahydrofuran-2-yl)methyl)pyridine (2v). 600 MHz, ¹H NMR in Methylene Chloride-*d*₂

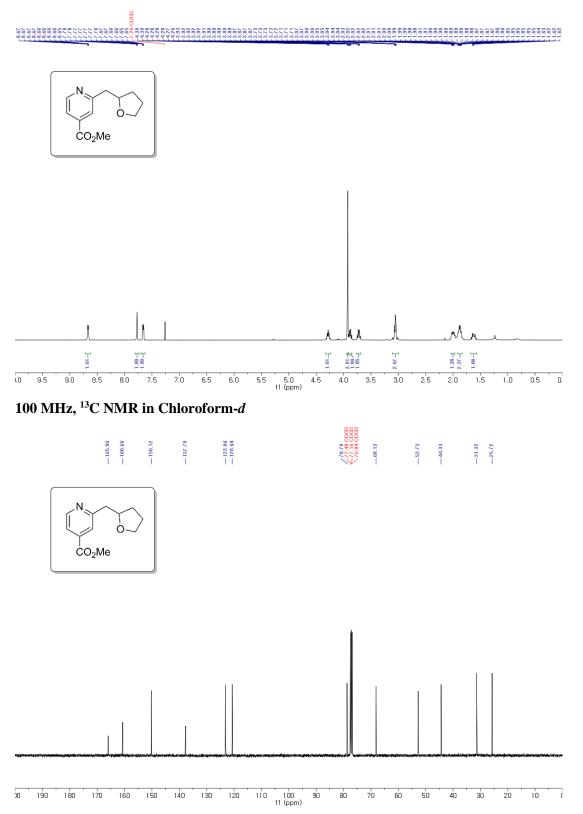

2-phenyl-6-((tetrahydrofuran-2-yl)methyl)pyridine (2w).

600 MHz, ¹H NMR in Methylene Chloride-*d*₂



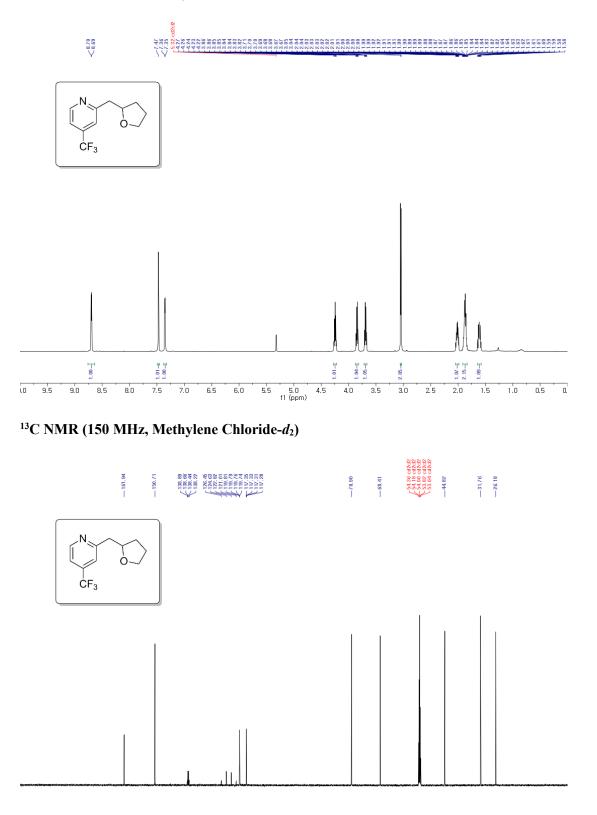

150 MHz, ¹³C NMR in Methylene Chloride-d₂

4-phenyl-2-((tetrahydrofuran-2-yl)methyl)pyridine (2x).

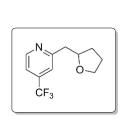


150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

methyl 2-((tetrahydrofuran-2-yl)methyl)isonicotinate (2y).

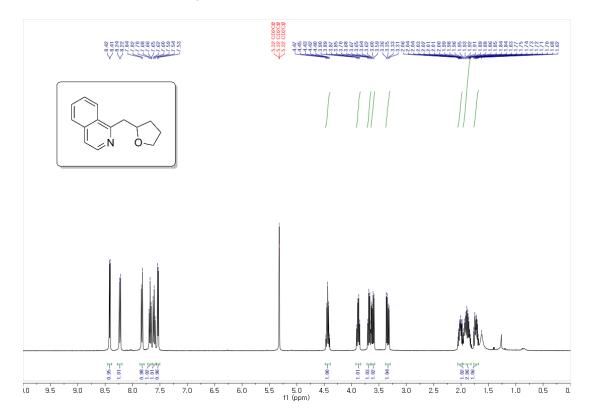

400 MHz, ¹H NMR in Chloroform-*d*

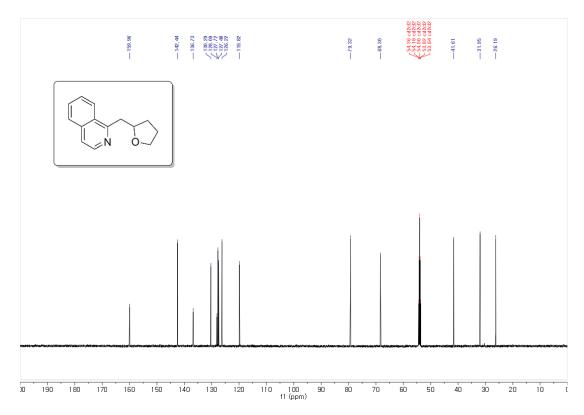
S74


2-((tetrahydrofuran-2-yl)methyl)-4-(trifluoromethyl)pyridine (2z).

¹H NMR (600 MHz, Methylene Chloride-*d*₂)

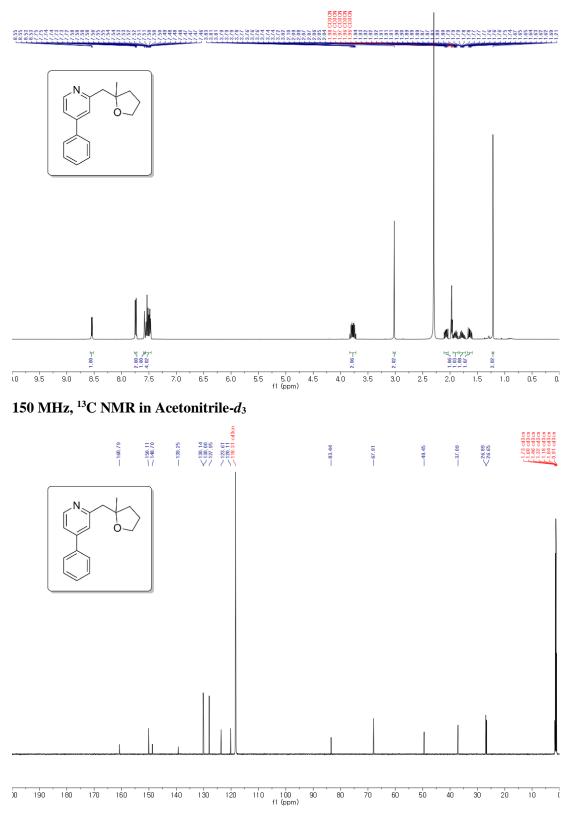
110 100 f1 (ppm) C


¹⁹F NMR (564 MHz, Methylene Chloride-*d*₂)

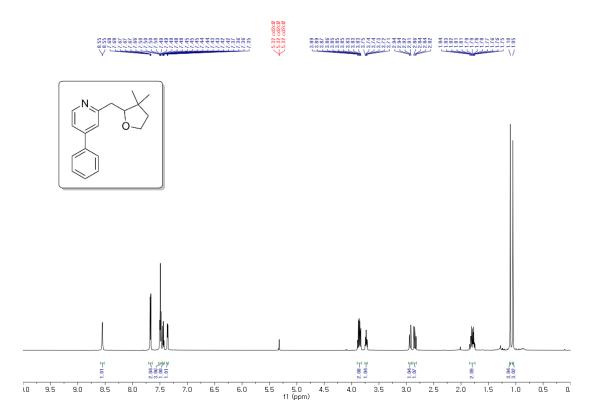

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

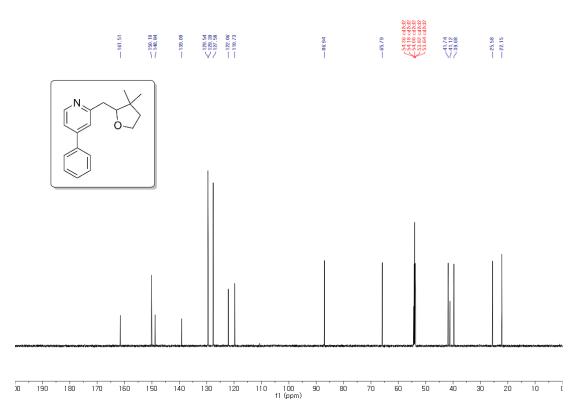
1-((tetrahydrofuran-2-yl)methyl)isoquinoline (2aa).

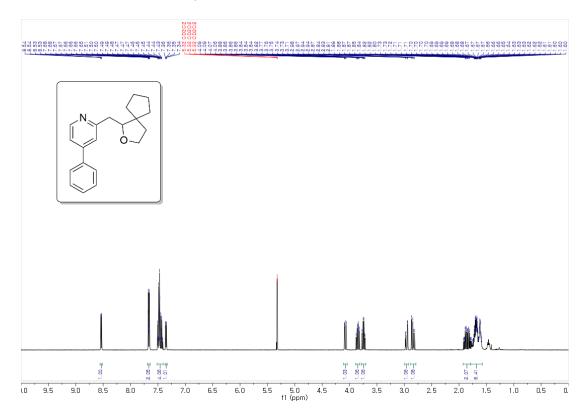
400 MHz, ¹H NMR in Methylene Chloride-*d*₂



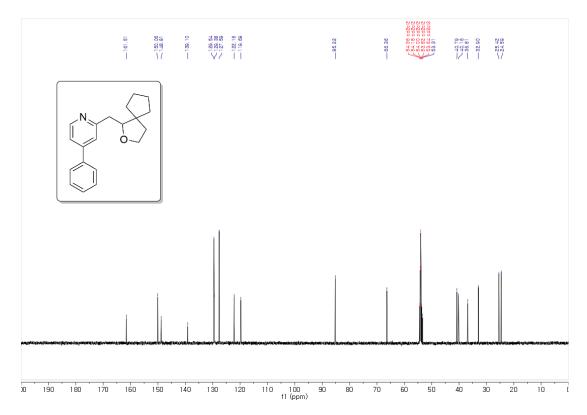
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

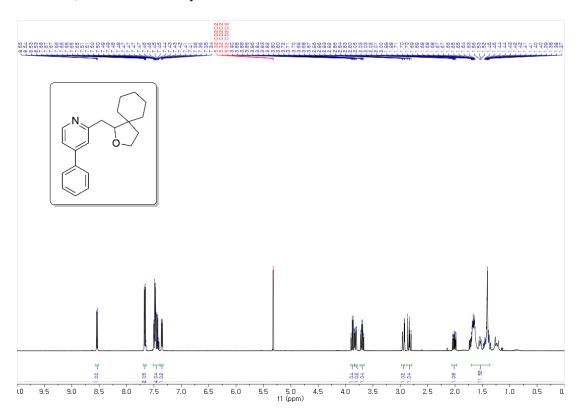

2-((2-methyltetrahydrofuran-2-yl)methyl)-4-phenylpyridine (2ab).

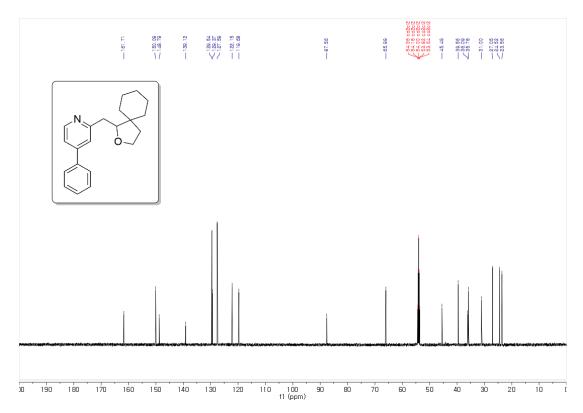

400 MHz, ¹H NMR in Acetonitrile-d₃

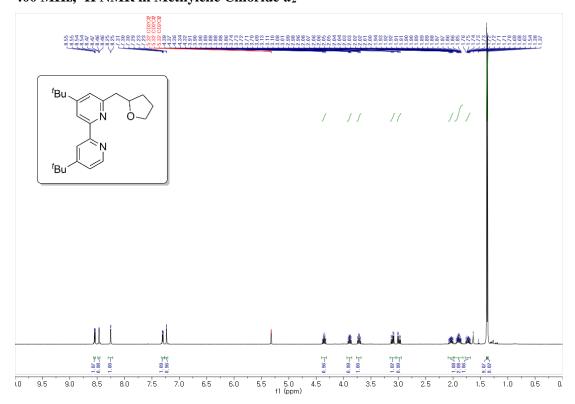

2-((3,3-dimethyltetrahydrofuran-2-yl)methyl)-4-phenylpyridine (2ac).

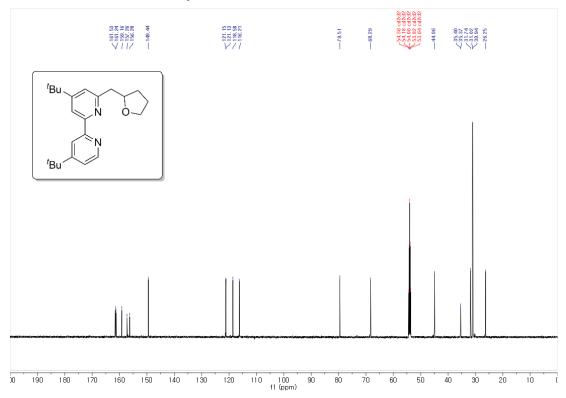
600 MHz, ¹H NMR in Methylene Chloride-*d*₂

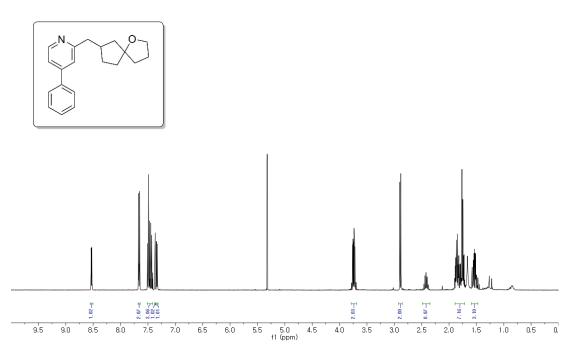


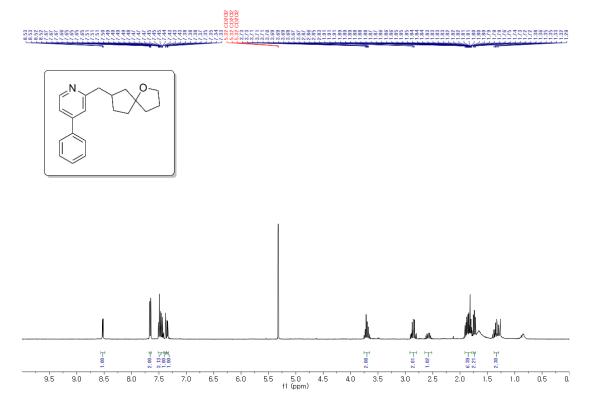

2-((2-oxaspiro[4.4]nonan-1-yl)methyl)-4-phenylpyridine (2ad).

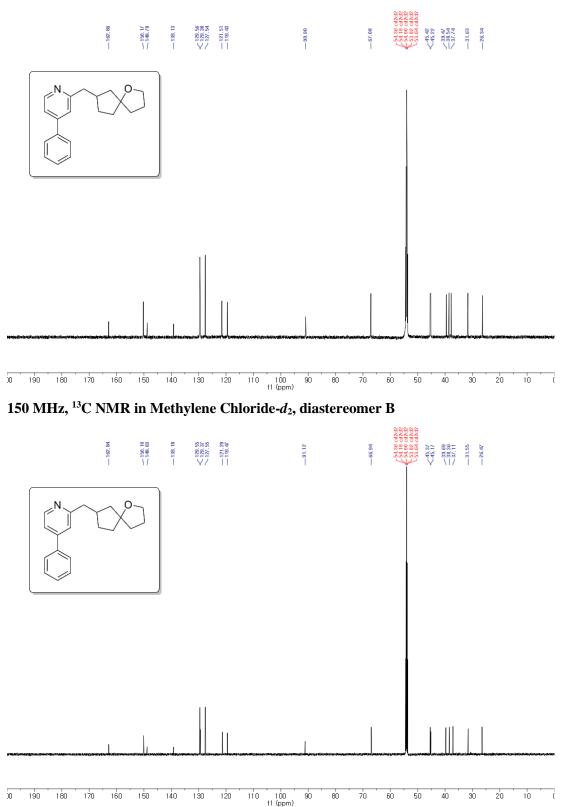

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂


2-((2-oxaspiro[4.5]decan-1-yl)methyl)-4-phenylpyridine (2ae).

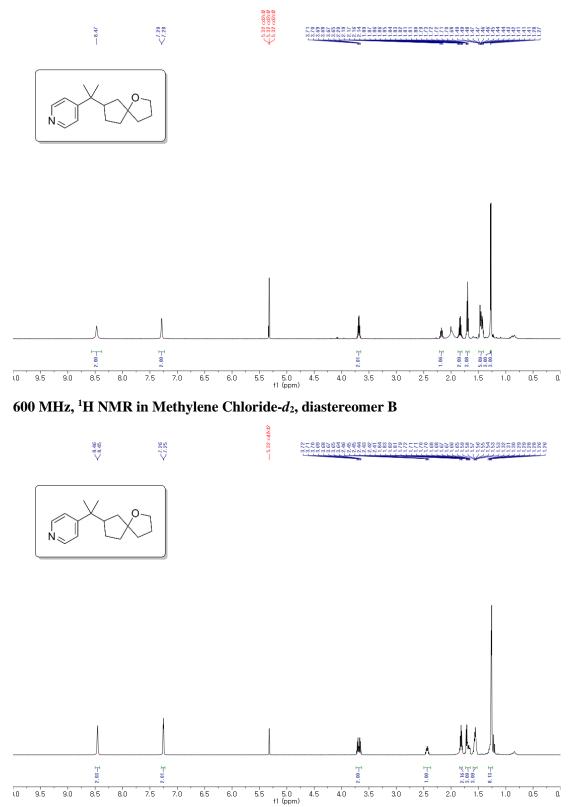

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

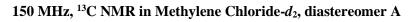

4,4'-di-tert-butyl-6-((tetrahydrofuran-2-yl)methyl)-2,2'-bipyridine (2af). 400 MHz, ¹H NMR in Methylene Chloride-*d*₂

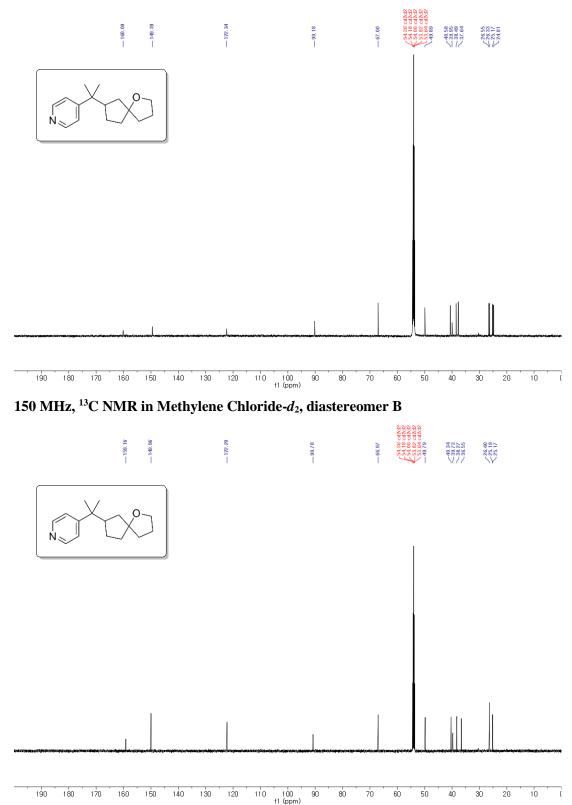

150 MHz, ¹³C NMR in Methylene Chloride-d₂



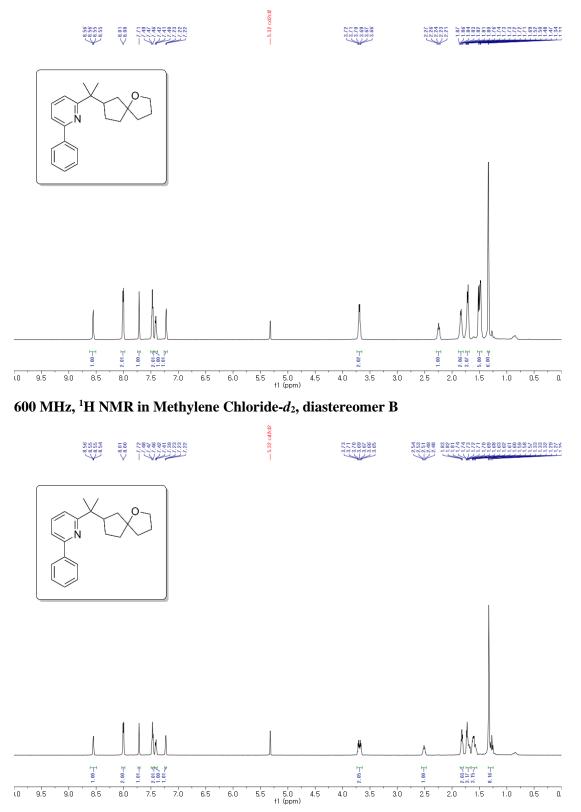
2-((1-oxaspiro[4.4]nonan-2-yl)methyl)-4-phenylpyridine (4a). 400 MHz, ¹H NMR in Methylene Chloride-*d*₂, diastereomer A

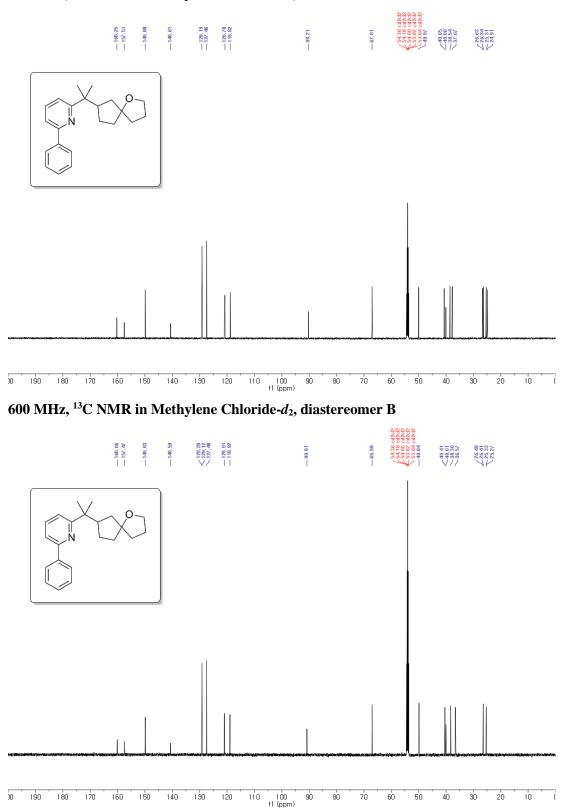

400 MHz, ¹H NMR in Methylene Chloride-*d*₂, diastereomer B



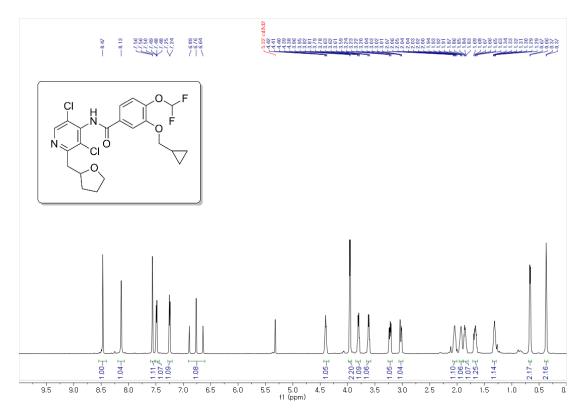


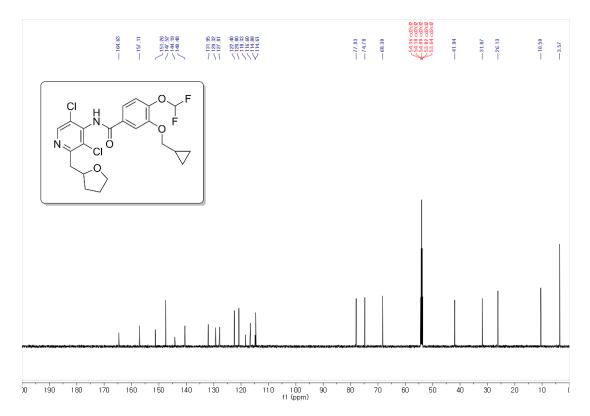
150 MHz, ¹³C NMR in Methylene Chloride-*d*₂, diastereomer A

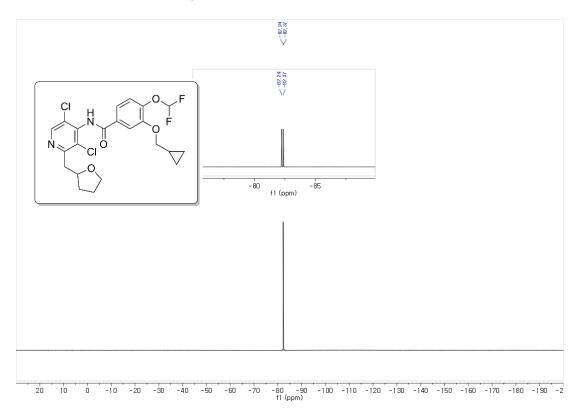

4-(2-(1-oxaspiro[4.4]nonan-7-yl)propan-2-yl)pyridine (4b). 600 MHz, ¹H NMR in Methylene Chloride-*d*₂, diastereomer A



2-(2-(1-oxaspiro[4.4]nonan-7-yl)propan-2-yl)-6-phenylpyridine (4c). 600 MHz, ¹H NMR in Methylene Chloride-*d*₂, diastereomer A



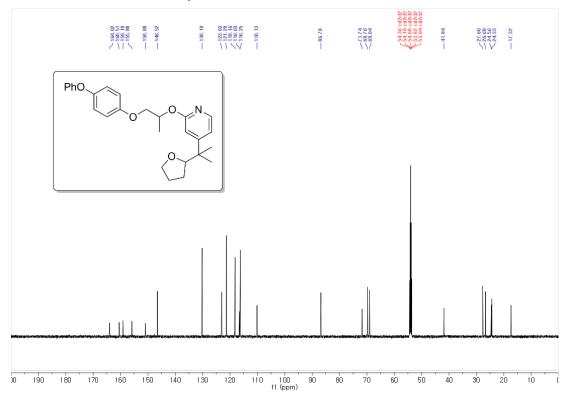

600 MHz, ¹³C NMR in Methylene Chloride-*d*₂, diastereomer A

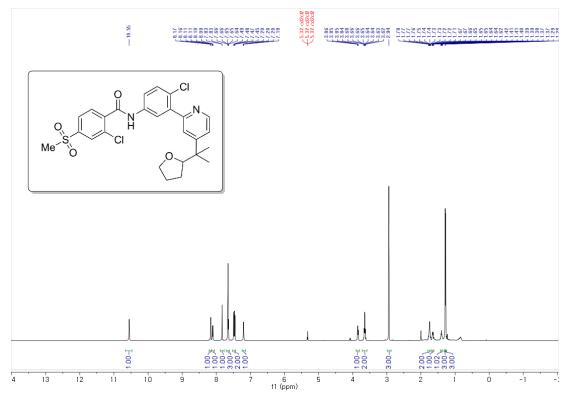

3-(cyclopropylmethoxy)-N-(3,5-dichloro-2-((tetrahydrofuran-2-yl)methyl)pyridin-4-yl)-4-(difluoromethoxy)benzamide (4d).

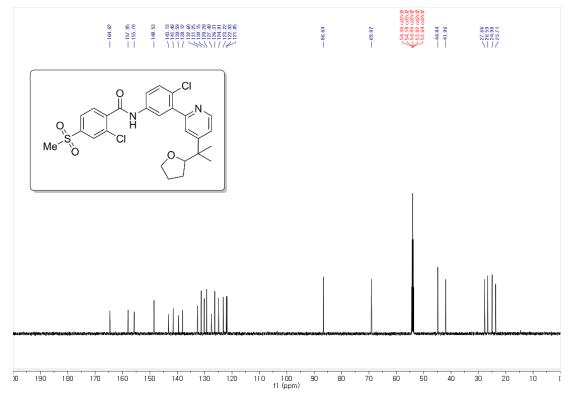
600 MHz, ¹H NMR in Methylene Chloride-*d*₂



150 MHz, ¹³C NMR in Methylene Chloride-*d*₂




2-((1-(4-phenoxyphenoxy)propan-2-yl)oxy)-4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridine (4e). 600 MHz, ¹H NMR in Methylene Chloride-*d*₂


150 MHz, ¹³C NMR in Methylene Chloride-d₂

2-chloro-N-(4-chloro-3-(4-(2-(tetrahydrofuran-2-yl)propan-2-yl)pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide (4f).

150 MHz, ¹³C NMR in Methylene Chloride-*d*₂

