Electronic Supplementary information (ESI) for

CO₂ Conversion by High-Dose Rate Electron Beam Irradiation: One Step, Metal-Free, Simultaneous, and Accelerated Production of H₂, CO, CH₄, C₂H₆ and Organic Acid from Acid-Decomposed CaCO₃/Additive EtOH Mixture

Yoichi Hosokawa, *a Shuji Kajiya, Ayako Ohshima, Nobuhiro Ishida, A Masakazu Washio^b and Arimitsu Usuki^{a,†}

^aToyota Central R&D Labs., Inc., 41-1, Nagakute, Aichi 480-1192, Japan

^bWaseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

[†]Present Address: Research Institute for Sustainable Humanosphere Kyoto University Uji, Kyoto 611-0011, Japan

List of Contents

Table S1. Results of experiments performed under identical conditions for reproducibility confirmation (CaCO ₃ /1
N HCl/EtOH, 100 kGy \times 1, n = 3). Primary data of GC/CE analysis and averages/standard deviationsS2
Fig. S1. Typical GC-MS charts of CO, CH ₄ , and C_2H_6 (100 kGy \times 1)S2
Table S2. GC primary data for EB-irradiated samples treated under different conditions
Fig. S2. ¹³ C NMR (400 MHz, D ₂ O) spectra of reference samples [0.4 mL irradiated solution/0.2 mL D ₂ O mixtures]
after EB irradiation (100 kGy \times 1)S3
Fig. S3. Qualitative UV spectra of reference samples and of the reaction solution before EB irradiationS3
Fig. S4. Selected GC-MS charts of aqueous phases. (a) Complete charts [different intensity scales], (b) MeOH
analysis chart
Fig. S5. Qualitative UV spectra (H ₂ O, 3–10%) of pure compounds observed in MS spectraS5
Table S3. Concentrations of organic acids (including all isotopes) in the aqueous phase estimated by CE
analysis
Fig. S6. Typical CE electropherogram of the aqueous solution (100 kGy \times 1)S5
Table S4. Comparison of ${}^{13}C/{}^{12}C$ isotope ratio between natural organic acids and experimentally observed organic
acids (300 kGy irradiated sample). (a) Formate, (b) acetate, and (c) propionate ratios
Table S5. ¹³ C organic acid concentrations estimated by CE and GC-MS analyses

	GC-TCD (%) GC-MS (ppm)					CE (µg/mL)						
Number		H ₂ CO ₂	CH4			СО			C_2H_6			
	H_2		<i>m/z</i> 16 ¹² C	<i>m/z</i> 17 ¹³ C	¹³ C/ ¹² C ratio	<i>m/z</i> 28 ¹² C	<i>m/z</i> 29 ¹³ C	¹³ C/ ¹² C ratio	<i>m/z</i> 30 ¹² C	Formate	Acetate	Propionate
1	10	81	1200	14	0.0117	220	1200	5.45	90	94	17	<10
2	11	78	1300	15	0.0115	250	1200	4.80	98	92	19	<10
3	10	80	1300	15	0.0115	240	1200	5.00	100	93	17	<10
Average	10	80	1267	15	0.0116	237	1200	5.08	96	93	18	<10
STDEV	0.69	1.29	57.74	0.58	0.00	15.28	0.00	0.27	5.29	1.00	1.15	0.00

Table S1. Results of experiments performed under identical conditions for reproducibility confirmation (CaCO₃/1 N HCl/EtOH, 100 kGy \times 1, *n* = 3). Primary data of GC/CE analysis and averages/standard deviations.

Fig. S1. Typical GC-MS charts of CO, CH₄, and C_2H_6 (100 kGy \times 1).

Table S2. GC primary data for EB-irradiated samples treated under different conditions.

			GC-TCD (%)		GC-MS (ppm)						
F (Dose / kGy (kGy/s × Pass)		CO ₂		CH ₄ CO					C ₂ H ₆
Entry	Sample Contents		H ₂		¹² C	¹³ C	¹³ C/ ¹² C	¹² C	¹³ C	¹³ C/ ¹² C	¹² C
1		25 (25 × 1)	3	68	230	2.5	0.0109	35	220	6.29	15
2	CaCO./1 N HC1/EtOH	100 (25 × 4)	13	71	1300	14	0.0108	180	980	5.44	85
3	CaCO ₃ /1 N HCI/EIOH	100 (100 × 1)	10	80	1300	15	0.0115	240	1200	5.00	100
4		300 (100 × 3)	21	65	390	4.1	0.0105	84	320	3.81	28
R1	CaCO ₃ /1 N HCl		1	91	2.1	N.D.	N.D.	13	420	32.31	N.D.
R2	CaCl ₂ /H ₂ O/EtOH		6	0.03	630	6.9	0.0110	52	0.7	0.01	150
R3	H ₂ O/EtOH		6	0.04	800	8.8	0.0110	64	0.8	0.01	180
R4	CO ₂ /CaCl ₂ /H ₂ O/EtOH CO ₂ /CaCl ₂ /H ₂ O	100 (100 × 1)	8	23	460	5.2	0.0113	84	170	2.02	40
R5			0	34	2.4	0.2	0.0833	6.7	70	10.45	N.D.
R6	CO ₂ /H ₂ O/EtOH		7	31	420	4.7	0.0112	74	200	2.70	32
R7	CO ₂ /H2O		0	30	3.0	0.2	0.0667	7.0	65	9.29	N.D.

Fig. S2. ¹³C NMR (400 MHz, D₂O) spectra of reference samples [0.4 mL irradiated solution/0.2 mL D₂O mixtures] after EB irradiation (100 kGy \times 1).

Fig. S3. Qualitative UV spectra of reference samples and of the reaction solution before EB irradiation.

Fig. S4. Selected GC-MS charts of aqueous phases. (a) Complete charts [different intensity scales], (b) MeOH analysis chart.

Fig. S5. Qualitative UV spectra (H₂O, 3–10%) of pure compounds observed in MS spectra.

Entry	Dose / kGy	Concentration (µg/mL)					
	$ (kGy/s \times Pass) $	НСООН	СН₃СООН	CH ₃ CH ₂ COOH			
1	25 (25 × 1)	24	<10	<10			
3	100 (100 × 1)	94	17	<10			
4	300 (100 × 3)	220	69	28			

Table S3. Concentrations of organic acids (including all isotopes) in the aqueous phase estimated by CE analysis.

Fig. S6. Typical CE electropherogram of the aqueous solution $(100 \text{ kGy} \times 1)$.

Table S4. Comparison of ${}^{13}C/{}^{12}C$ isotope ratio between natural organic acids and experimentally observed organic acids (300 kGy irradiated sample). (a) Formate, (b) acetate, and (c) propionate ratios.

a)	Methyl formate	m/z	Isotope ratio (%)		
			Natural	Observed	
	¹² C	60	0.989	0.221	
	¹³ C	61	0.011	0.779	

h	٦.
IJ	

Mathyl acatata	700 / -	Isotope ratio (%)			
Mentyl acciaic	<i>mu2</i>	Natural	Observed		
¹² C- ¹² C	74	0.979	0.892		
¹² C- ¹³ C	75	0.021	0.101		
¹³ C- ¹³ C	76	(0.0001)	0.007		

-: Not detected

c)	Methyl propionate	(Isotope ratio (%)		
		111/2	Natural	Observed	
	${}^{12}C-{}^{12}C-{}^{12}C$	88	0.968	0.088	
	$^{12}C-^{12}C-^{13}C$	89	0.031	0.879	
	¹² C- ¹³ C- ¹³ C	90	(0.000339)	0.024	
	¹³ C- ¹³ C- ¹³ C	91	(0.000001)	-	

Table S5. ¹³C organic acid concentrations estimated by CE and GC-MS analyses.

Entry		Concentration (µg/mL)							
	Dose / kGy (kGy/s × Pass)	НСООН	CH ₃ C	ООН	CH ₃ CH	CH ₃ CH ₂ COOH			
		¹³ C	¹² C- ¹³ C	¹³ C- ¹³ C	¹² C- ¹² C- ¹³ C	¹² C- ¹³ C- ¹³ C			
1	25 (25×1)	11	-	-	-	-			
3	100 (100×1)	73	1.8	-	-	-			
4	300 (100×3)	171	7	0.5	24.6	0.7			

-: Not detected