Daniel J. McClelland ${ }^{\text {a }}$, Peter H. Galebach ${ }^{\text {a }}$, Ali Hussain Motagamwala ${ }^{\text {a,b }}$, Ashley M. Wittrig ${ }^{\text {c }}$,
Steven D. Karlen ${ }^{\text {b,d }}$, J. Scott Buchanan ${ }^{\text {c }}$, James A. Dumesic ${ }^{\text {a,b }}$, and George W. Huber ${ }^{* a}$
${ }^{\text {a }}$ Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. Email: gwhuber@wisc.edu
${ }^{\mathrm{b}}$ Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, USA
${ }^{\mathrm{c}}$ ExxonMobil Research and Engineering, Annandale, NJ, USA
${ }^{\text {d }}$ Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA

Supplementary Information

Table S1. Lignin fraction carbon yields of 15 and 30 min from SCM-DHDO experiments with maple wood and GVL extracted lignin. Dimer and trimer yields were estimated for the 15 min time-point using a high-temperature GC-FID.

Feed	Carbon yield from lignin fraction (\%)			
	Maple Wood	GVL extracted lignin	Maple Wood	GVL extracted lignin
By compound	15 min	15 min	30 min	30 min
Guaiacol	0.8	0.1	0.9	0.2
4-Ethylphenol	1.5	0.1	1.4	0.3
4-Methylguaiacol	1.5	0.2	1.4	0.5
4-Ethylguaiacol	1.4	0.5	1.2	0.9
4-Propylphenol	1.4	0.0	1.2	0.0
4-Propylguaiacol	6.3	0.8	5.7	1.3
4-Methylsyringol	0.8	0.2	0.8	0.4
4-Ethylsyringol	0.8	0.3	0.9	0.5
4-Propylsyringol	0.8	1.1	1.3	0.9
By type				
Syringols	2.4	1.6	3.1	1.8
Guaiacols	10.1	1.7	9.2	3.0
Phenols	2.9	0.1	2.6	0.3
By alkyl tail length				
No tail (C_{0})	0.8	0.1	0.9	0.2

Methyl tail $\left(\mathrm{C}_{1}\right)$	2.3	0.4	2.2	0.9	
Ethyl tail $\left(\mathrm{C}_{2}\right)$	3.7	1.0	3.6	1.7	
Propyl tail $\left(\mathrm{C}_{3}\right)$	8.6	1.9	8.2	2.2	
Unidentified aromatics	0	0.6	0	3.0	
Unidentified cyclohexanols	0	0.0	0	0.0	
Total monomers	15.4	4.1	15.0	8.1	
$\mathrm{~S} / \mathrm{G} / \mathrm{P}$ ratio	$1.0 / 4.2 / 1.2$	$1.0 / 1.0 / 0.1$	$1.0 / 2.9 / 0.8$	$1.0 / 1.6 / 0.2$	
Alkyl tail length ratio $\mathrm{C}_{0} / \mathrm{C}_{1} / \mathrm{C}_{2} / \mathrm{C}_{3}$	$0.1 / 0.3 / 0.4 / 1.0$	$0.1 / 0.2 / 0.5 / 1.0$	$0.1 / 0.3 / 0.4 / 1.0$	$0.1 / 0.4 / 0.8 / 1.0$	
Estimated dimer yield	0.0		2.3	Not measured	Not measured
Estimated trimer yield	0.0	0.0	Not measured	Not measured	

Table S2. Carbon yields from 4 h SCM-DHDO experiments with various feedstocks. Base reaction conditions: 100 mg feed, 100 mg CuMgAlOx catalyst, $2.4 \mathrm{~g} \mathrm{MeOH}, 5 \mathrm{psig}$ initial He pressure, $300^{\circ} \mathrm{C}$ reaction temperature, and 4 h reaction time. *PA products are not deconvoluted from the lignin products.

Lignin Fraction Carbon Yields (\%)										
Feed:	100 mg GVL extracted lignin (unreduced catalyst)	$\begin{gathered} 100 \mathrm{mg} \\ \text { GVL } \\ \text { extracted } \\ \text { lignin } \end{gathered}$	100 mg Maple Wood	25 mg GVL extracted lignin	100 mg GVL extracted lignin (150 mg catalyst)	25 mg extracted lignin + 75 mg Cellulose	$\begin{gathered} 100 \mathrm{mg} \\ \text { GVL } \\ \text { extracted } \\ \text { lignin + } \\ 100 \mathrm{mg} \mathrm{PA}^{*} \end{gathered}$	100 mg GVL extracted lignin + 25 mg PA*	$\begin{gathered} 100 \mathrm{mg} \\ \text { Maple } \\ \text { Enzyme } \\ \text { Lignin (EL) } \end{gathered}$	100 mg MeOH insoluble GVL extracted lignin
4-Ethylcyclohexanol	0.9 (0.03)	1.6 (0.13)	2.8	1.4 (0.12)	1.5 (0.16)	3.3 (0.08)	2.3 (0.04)	1.9 (0.15)	1.6 (0.03)	1.3
4-Propylcyclohexanol	1.5 (0.06)	2.7 (0.32)	9.3	1.8 (0.14)	2.3 (0.13)	2.6 (0.15)	3.2 (0.01)	2.7 (0.18)	4.8 (0.07)	2.2
4-Propylphenol	1.1 (0.04)	0.7 (0.08)	ND	0.3 (0.05)	0.4 (0.03)	ND	0.7 (0.04)	0.6 (0.04)	0.7 (0.01)	0.6
Unidentified Aromatics	10.9 (0.74)	7.7 (1.18)	12.7	7.5 (1.46)	6.5 (1.33)	4.8 (1.06)	11.3 (1.68)	9.3 (1.32)	7.0 (0.71)	5.8
Unidentified Cyclohexanols	6.3 (0.40)	7.6 (0.42)	18.5	10.6 (0.87)	8.4 (1.50)	7.0 (0.39)	10.3 (0.96)	8.3 (0.91)	10.3 (0.33)	6.8
Total aromatics	11.9 (0.78)	8.4 (1.24)	12.7	7.9 (1.51)	6.9 (1.36)	4.8 (1.06)	12.1 (1.72)	9.8 (1.36)	7.7 (0.70)	6.4
Total cyclohexanols	8.7 (0.49)	11.9 (0.59)	30.5	13.8 (1.12)	12.2 (1.79)	12.9 (0.61)	15.8 (1.00)	13.0 (1.24)	16.7 (0.23)	10.4
Total monomer yield	20.7 (1.27)	20.3 (1.81)	43.1	21.7 (2.63)	19.1 (3.16)	17.7 (1.68)	27.8 (2.73)	22.8 (2.60)	24.4 (0.47)	16.8
Aromatic/cyclohexanol ratio (A / C ratio)	1.37	0.70	0.42	0.57	0.56	0.37	0.77	0.75	0.46	0.62
Estimated dimer yield	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$	57	54	$\begin{array}{r} \mathrm{Not} \\ \text { measured } \end{array}$	$\begin{array}{r} \mathrm{Not} \\ \text { measured } \end{array}$	$\begin{array}{r} \mathrm{Not} \\ \text { measured } \end{array}$	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$	$\begin{array}{r} \mathrm{Not} \\ \text { measured } \end{array}$	$\begin{array}{r} \mathrm{Not} \\ \text { measured } \end{array}$
Estimated trimer yield	Not measured	7	6	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$	$\begin{array}{r} \mathrm{Not} \\ \text { measured } \end{array}$	Not measured	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$	$\begin{array}{r} \text { Not } \\ \text { measured } \end{array}$

