SUPPLEMENTARY INFORMATION

epoxidation followed by spontaneous rearrangement into trans-sobrerol.

Figure S 2. GC chromatogram of P450-BM3/2M catalyzed conversion of (-)-α-pinene (2 mM) into *trans*-sobrerol. The enzymatic reaction (top) is compared with commercial *trans*-sobrerol dissolved in ethyl acetate (*trans*-sobrerol reference, middle). As negative control (bottom), reaction buffer instead of P450-BM3/2M was prepared an incubated under the same conditions.

Figure S 3. Fragmentation pattern of *trans*-sobrerol (theoretical mass of 170 g/mol) from P450-BM3/2M catalyzed synthesis (Enzymatic *trans*-sobrerol) compared to the fragmentation pattern of synthetic *trans*-sobrerol (*trans*-sobrerol reference).

Figure S 4. GC-FID chromatogram of the of the lipase catalyzed conversion of *trans*-sobrerol into *trans*-sobreryl methacrylate (Enzymatic reaction) compared with synthetic *trans*-sobreryl methacrylate and commercially available Sobrerol. Conversion of 96% was detected

Figure S 5. Mass spectrum of *trans*-sobreryl methacrylate (theoretical mass of 238 g/mol) from the lipase catalyzed synthesis (Enzymatic *trans*-sobreryl methacrylate) compared to the mass spectrum of synthetic *trans*-sobreryl methacrylate.

Reaction time	60 °C (Conversion	70 °C (Conversion	80 °C (Conversion	90 °C (Conversion
[h]	SobMA[%])	SobMA[%])	SobMA[%])	SobMA[%])
0	n.d.	0	n.d.	4
24	32	71	86	75
48	68	77	97	86
72	70	83	98	91

Table S 1. Enzymatic transformation of Sob into SobMA at different temperatures. reactions were performed using 100 mg of Sob, 130 mg of lipase and 4 ml of VMA.

Table S 2. Enzymatic transformation of Sob into SobMA using different monomer ratios.

1		6 6	6 1	
	Sob:VMA 1:20	Sob:VMA 1:30	Sob:VMA 1:40	Sob:VMA 1:56
Reaction time	(Conversion	(Conversion	(Conversion	(Conversion
[h]	SobMA[%])	SobMA[%])	SobMA[%])	SobMA[%])
0	8	10	9	0
17	73	72	63	55
24	82	81	69	66
48	92	92	85	81
72	96	96	91	89

reactions were performed at 80 °C using 100 mg of Sob and 130 mg of lipase.

Figure S 6. ¹H NMR spectra showing the conversion of **SobMA** at different time points under RAFT polymerization conditions. Key signals are annotated.

Figure S 7. Polymerization kinetics of SobMA. (a) Time-dependent monomer conversions. (b) $ln([M_0]/[M])$ vs time plots. SEC traces for free-radical (c), RAFT (d) and ATRP (e) polymerizations.

Figure S 8. Evolution of the molecular weights and dispersities of free-radical (a), RAFT (b), and ATRP (c) polymerizations.

Figure S 9. ¹H NMR spectra displaying the conversion of **SobMA** at different time points under free-radical polymerization conditions. Key signals are annotated.

Figure S 10. ¹H NMR spectra showing the conversion of **SobMA** at different time points under ATRP polymerization conditions. Key signals are annotated.

formation of $P(SobMA_{R100}-b-MMA_{R100})$. Samples taken before the MMA feed (6 h, maroon) and after the full polymerization time (24 h, black).

formation of $P(SobMA_{R100}-b-BMA_{R100})$. Samples taken before the BMA feed (6 h, maroon) and after the full polymerization time (24 h, black).

Figure S 13. Molecular weight distributions during the polymerization of $P(SobMA_{R100}-b-MMA_{R100})$; before the methyl methacrylate feed (6 h) and after the full polymerization time (24 h).

Figure S 14. Molecular weight distributions during the polymerization of $P(SobMA_{R100}-b-BMA_{R100})$; before the methyl methacrylate feed (6 h) and after the full polymerization time (24 h).

Figure S 15. ¹H NMR spectrum of P(SobMA_{R100}-*b*-MMA_{R100}) in CDCl₃.

Figure S 16. ¹H NMR spectrum of P(SobMA_{R100}-*b*-BMA_{R100}) in CDCl₃.

Figure S 17. ¹H NMR spectrum of P(SobMA_{R100}-st-MMA_{R100}) in CDCl₃.

Figure S 18. ¹H NMR spectrum of P(SobMA_{R100}-st-BMA_{R100}) in CDCl₃.

Figure S 19. FTIR spectra of poly(sobreryl methacrylates).

Figure S 20. ¹H NMR spectrum showing the precipitated PSobMA_E.

Figure S 21. ¹H NMR spectrum of P(SobMA_{E25}-st-BMA_{E75}) in CDCl_{3.}

Figure S 22. Molecular weight distribution of P(SobMA_{E25}-st-BMA_{E75}).

Figure S 23. Degradation thermograms (TGA) for sobreryl methacrylate homo (solid lines) and co-polymers (dashed lines) at a heating rate of 10 °C/min.

Figure S 24. DSC thermograms from the second heating of sobreryl methacrylate homo (solid lines) and co-polymers (dashed lines) at a heating rate of 10 °C/min.

Figure S 25. FTRaman spectroscopy of $PSobMA_{R50}$ and its corresponding coating via thiol-ene chemistry.

Figure S 26. FTRaman spectroscopy of $P(SobMA_{R25}-st-BMA_{R75})$ and its corresponding coating via thiol-ene chemistry

Figure S 27. Solubility test of the crosslinked $PSobMA_{R50}$ and $P(SobMA_{R25}-st-BMA_{R75})$ using TMTP. Polymers (c, d, g and h) and crosslinked films (a, b, e and f) were added into vials together with THF (a, c, e and g) and DCM (b, d, f and h) and shaked for 24h.

Figure S 28. FT-IR spectroscopy of PSobMA_{R50}, $P(SobMA_{E25}-st-BMA_{E75})$ and its corresponding coating via transetherification.

Figure S 29. Solubility test of the crosslinked $PSobMA_{R50}$ and $P(SobMA_{E25}$ -*st*-BMA_{E75}) using HMMM. Crosslinked films (a, b) and polymers (c, d) and were added into vials together with THF and shaked for 24h.

Primer	Sequence
A74G fw	ATGAATCACGCTTTGATAAAAACTTAAGTCAAggcCTTAAATTTGTACG
A74G rev	TAACCCGTCTCCTGCAAAATCACGTACAAATTTAAGgccTTGACTTAAG
	<u> </u>
T 1000 C	
L188Q fw	TATGGTCCGTGCACTGGATGAAGCAATGAACAAG <u>cag</u> CAGCGAGC
I 1990 rou	
LIGOVIEV	

Table	S 3 .	Listed	primers	used	for site	directed	mutagenesis.

 Table S 4. Site directed mutagenesis temperature program.

Program phase	Temperature	Time	Number of cycles
	(°C)	(min)	

Pre-phase	95	2	1
Initialize	95	0.33	
Annealing of primer	T^*	0.33	30
Elongation	72	2.13	
Final elongation	72	3 min	
End	4	∞	1

*Annealing temperatures: T = 58 °C for A74G mutation and T = 64 °C for L188Q mutation.

Figure S 30. SDS-PAGE of purification fractions of P450-BM3/2M. Purification fractions,

analyzed by SDS-PAGE (10% Mini PROTEAN TGX-gels, BioRad). S = supernatant, FT = flow through, W1 = wash buffer A, W2 = wash buffer B, E1-E5 = elution fractions 1 to 5.