Supporting Information (SI)

Graphite Oxide- and Graphene Oxide-supported Catalysts for Microwave-assisted

Glucose Isomerisation in Water

Iris K.M. Yu ^{a,b}, Xinni Xiong ^a, Daniel C.W. Tsang ^{a,*}, Yun Hau Ng ^c, James H. Clark ^b, Jiajun

Fan ^b, Shicheng Zhang ^d, Changwei Hu ^e, Yong Sik Ok ^f

^a Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

^b Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK

^c School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

^d Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China

^e Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

^f Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea

*Corresponding author: <u>dan.tsang@polyu.edu.hk</u>

XPS	Components	Symbols	Binding energies (eV)	References
O 1s	Chemisorbed H ₂ O or O ₂		535.3	[1]
	Anhydride, lactone, carboxylic acids	O-C=O	533.3	[1]
	Hydroxyl, ethers, epoxy	С-ОН, С-О-С	532.1-532.4	[1, 2]
	Al-OH hydroxyl	Al-OH	531.4-531.9	[3, 4]
	Carbonyl, quinone	C=O	530.7	[1]
	Al oxide	Al-O	530.4	[3]
C 1s	Carboxyl groups, esters, and lactones	0-C=0	288.4-290.4	[5, 6]
	Ketone, aldehyde	C=O	287	[7]
	Ether, epoxy	C-O-C	286.3	[7]
	Alcohol	C-OH	285.6	[7]
	Sp3-bonded carbon, adventitious carbon	C sp3, C-C, C-H	284.5-285	[8, 9]
	Sp2-bonded carbon	C sp2	284.4-284.8	[6, 7]
Al 2p	Alumina	Al_2O_3	75.8-76	[10, 11]
	Bayerite	β-Al(OH) ₃	75	[4]
	Gibbsite, Al-O-C	γ-Al(OH)3, Al-O-C	74.4	[4, 12]
	Boehmite	γ-AlO(OH)	73.9	[4]
	Metallic Al	Al	72.2-72.8	[10, 12]

Table S1. Binding energies reported in the literature.

References

- [1]. H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla and C.A. Zaror, Langmuir, 2002, 18, 2111-2116.
- [2]. B. Yu, X. Wang, X. Qian, W. Xing, H. Yang, L. Ma, Y. Lin, S. Jiang, L. Song, Y. Hu, and S. Lo, 2014, RSC Adv., 4, 31782-31794.
- [3]. I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga and V. Smyntyna, Vacuum, 2015, 113, 52-58.
- [4]. J.T. Kloprogge, L.V. Duong, B.J. Wood, R.L. Frost, J. Colloid Interface Sci., 2006, 296, 572-576.
- [5]. L., Qian and B. Chen, J. Agr. Food Chem., 2014, 62, 373-380.
- [6]. P. Dash, T. Dash, T.K. Rout, A.K. Sahu, S.K. Biswal, and B.K. Mishra, 2016, RSC Adv., 6, 12657–12668.
- [7]. K. Ganesan, S. Ghosh, N.G. Krishna, S. Ilango, M. Kamruddin and A.K. Tyagi, Phys. Chem. Chem. Phys., 2016, 18, 22160-22167.
- [8]. M. Lawrinenko, D. Jing, C. Banik and D.A. Laird. Carbon, 2017, 118, 422-430.
- [9]. Cardiff University, XPS Analysis Carbon http://sites.cardiff.ac.uk/xpsaccess/reference/carbon/
- [10]. R. Bicker, H. Deger, W. Herzog, K. Rieser, H. Pulm, G. Hohlneicher and H.J. Freund, J. Catal., 1985, 94, 69-78.
- [11]. C. Xu, T. Sritharan, S.G. Mhaisalkar, M. Srinivasan and S. Zhang, Appl. Surf. Sci., 2007, 253, 6217-6221.
- [12]. M. Bou, J.M. Martin, T. Le Mogne and L. Vovelle, Appl. Surf. Sci., 1991, 47, 149-161.

Figure S1. Nitrogen adsorption-desorption isotherms of the prepared samples.

Figure S2. SEM images of the prepared samples.

Figure S3. (a) C 1s XPS spectra of the prepared samples and curve fitting for the C 1s XPS spectra of (b) G, (c) GIO, (d) G-A1500, (e) GIO-A1200, (f) GIO-A1500, (g) GO-A1200, and (h) GO-A1500.

Figure S4. (a) O 1s XPS spectra of the prepared samples and curve fitting for the O 1s XPS spectra of (b) G, (c) GIO, (d) G-Al500, (e) GIO-Al200, (f) GIO-Al500, (g) GO-Al200, and (h) GO-Al500.

Figure S5. TEM images of (a) GIO-Al200, (b) GO-Al200, and (c) GO-Al500.

Figure S6. Glucose conversion and total carbon resulted from the catalytic conversion of glucose over different catalysts for (a) 1 min and (b) 20 min (conditions: 0.5 g glucose and 0.25 g catalyst in 10 ml water or acetone/H₂O (1:1 v/v) at 140 °C).

Figure S7. Yields of HMF, disaccharide (DS), levoglucosan (LG), levulinic acid (LA), and formic acid (FA) resulted from the catalytic conversion of glucose over different catalysts for (a) 1 min and (b) 20 min (conditions: 0.5 g glucose and 0.25 g catalyst in 10 ml water or acetone/H₂O (1:1 v/v) at 140 °C).

Figure S8. Fructose as a function of the (a) total Al content and (b-d) distribution of Al species suggested by XPS curve fitting, as well as (e) BET surface area and (f) total pore volume (conditions: 0.5 g glucose and 0.25 g catalyst in 10 ml water or acetone/H₂O (1:1 v/v) at 140 °C for 1 and 20 min).

Figure S9. Fructose yield resulted from the catalytic conversion of glucose over different catalysts for 20 min at 140 ± 3 °C in an oil bath (conditions: 0.5 g glucose and 0.25 g catalyst in 10 ml water).