**Electronic Supplementary Information for** 

## One-Pot Aqueous Synthesis of Ultrathin Trimetallic PdPtCu Nanosheets for the

## **Electrooxidation of Alcohols**

Hao Lv,<sup>a</sup> Lizhi Sun,<sup>a</sup> Dongdong Xu,<sup>\*a</sup> Steven L. Suib,<sup>b</sup> and Ben Liu<sup>\*a</sup>

<sup>a</sup>Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

<sup>b</sup>Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States

E-mails: ddxu@njnu.edu.cn (D. Xu), ben.liu@njnu.edu.cn (B. Liu)



**Fig. S1** TEM images of ultrathin PdPtCu nanosheets perpendicularly standing on carbon supports. The results indicated that PdPtCu nanosheets are ultrathin with an average thickness of 3.5 nm.



Fig. S2 XPS survey of ultrathin trimetallic PdPtCu nanosheets.



**Fig. S3** TEM images of trimetallic PdPtCu nanostructures synthesized with different surfactant of (a, b)  $C_{16}TAC$ , (c, d)  $C_{22}TAB$  (with the presence of Br<sup>-</sup>, instead of Cl<sup>-</sup>), and (e, f) using CO as reducing agent. Due to the relatively weak confinement effect of CO to other metals (e.g., Cu), the resultant PdPtCu nanosheets reduced by CO possess some irregular nanostructures on the surface (e and f), further confirming the powerful ability of the synthesis strategy by  $C_{22}TAC$  to produce multimetallic nanosheets.



**Fig. S4** TEM images of (a, b) 0D PdPtCu nanoparticles synthesized in the absence of surfactant and (c, d) monometallic Pd nanosheets.



**Fig. S5** CV curves of (a) ultrathin PdPtCu nanosheets and (b) commercial Pt nanoparticles with different electrocatalytic cycles.



**Fig. S6** CV curves (a) and i-t chronoamperometry curves (b) of trimetallic PdPtCu nanosheets reduced by AA and CO, respectively.



**Fig. S7 Ethanol electrooxidation.** CV curves of trimetallic PdPtCu nanosheets, bimetallic PdPt and PdCu nanosheets, monometallic Pd nanosheets, PdPtCu nanoparticles, and commercial Pt and Pd nanoparticles obtained in 1.0 M KOH and 1.0 M ethanol at 50 mV s<sup>-1</sup>.



**Fig. S8 Glycerol electrooxidation.** CV curves of trimetallic PdPtCu nanosheets, bimetallic PdPt and PdCu nanosheets, monometallic Pd nanosheets, PdPtCu nanoparticles, and commercial Pt and Pd nanoparticles obtained in 1.0 M KOH and 0.1 M glycerol at 50 mV s<sup>-1</sup>.



**Fig. S9 Glucose electrooxidation.** CV curves of trimetallic PdPtCu nanosheets, bimetallic PdPt and PdCu nanosheets, monometallic Pd nanosheets, PdPtCu nanoparticles, and commercial Pt and Pd nanoparticles obtained in 0.1 M NaOH and 0.01 M glucose at 50 mV s<sup>-1</sup>.



Fig. S10 (a-c) TEM images and (d) corresponding EDX of ultrathin trimetallic PdAgCu nanosheets.

| Electrocatalyst             | catalyst Electrolyte |       | Peak current from CV $(A mg_{NM}^{-1})$ | Reference                                     |
|-----------------------------|----------------------|-------|-----------------------------------------|-----------------------------------------------|
|                             | Methanol             | KOH   | 50 mV s <sup>-1</sup>                   |                                               |
| PdPtCu NSs                  | 1.0 M                | 1.0 M | 2.67                                    | This work                                     |
| PtPdBi<br>nanoparticles     | 1.0 M                | 1.0 M | 2.133                                   | Catalysts, 2017, 7, 208                       |
| Pt/Ni(OH) <sub>2</sub> /rGO | 1.0 M                | 1.0 M | 1.07                                    | Nat. Commun. 2015, 6, 10035                   |
| PdRuP                       | 1.0 M                | 1.0 M | 1.26                                    | Int. J. Hydrogen Energy, 2017,<br>42, 11229   |
| Pd/PTCDIIL/GO               | 1.0 M                | 1.0 M | 0.616                                   | Electrochim. Acta 2013, 109, 276              |
| Pd@PtNi                     | 1.0 M                | 1.0 M | 1.614                                   | ACS Appl. Nano Mater. 2018,<br>1, 3226        |
| Pt/NiFe-<br>LDH/RGO         | 1.0 M                | 1.0 M | 0.949                                   | J. Electroanalyt. Chem., 2018, 818, 198       |
| PdAu/C                      | 1.0 M                | 1.0 M | 0.951                                   | J. Mater. Chem. A, 2013, 1,<br>9157           |
| PtAuRu/RGO/G<br>C           | 1.0 M                | 1.0 M | 1.606                                   | J. Mater. Chem. A, 2013, 1,<br>7255           |
| PtAu/PDA-RGO                | 1.0 M                | 1.0 M | 0.645                                   | Electrochim. Acta, 2015, 153, 175             |
| Pt/RGO/TiO <sub>2</sub> /CF | 1.0 M                | 1.0 M | 0.364                                   | J. Solid State Electrochem.,<br>2014, 18, 515 |
| $Pt_{50}Pd_{50}$            | 1.0 M                | 1.0 M | 0.336                                   | Chem. Commun., 2016, 52,<br>12737             |
| Pd/ZnO/GNs                  | 1.0 M                | 1.0 M | 0.818                                   | Langmuir, 2015, 31, 2576                      |
| PdCu /RGO                   | 1.0 M                | 1.0 M | 1.153                                   | J. Power Sources, 2015, 228, 160              |
| PdCu/VrGO                   | 1.0 M                | 1.0 M | 0.763                                   | J. Power Sources, 2015, 278,<br>725           |
| N-Pt/RGO/CF                 | 1.0 M                | 1.0 M | 1.073                                   | Int. J. Hydrogen Energy, 2013, 38, 6368       |

**Table S1.** Summarization of methanol electrochemical performance of PdPtCu nanosheets in alkaline solution.