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Supplementary figures
Fig. S1. The cross-sectional image of the original PVDF membrane.
Fig. S2. The particle size distribution of the loess pretreated with HCI solution.
Fig. S3. Pore size distribution and average pore size of the loess-coated PVDF
membrane.
Fig. S4. AFM image of the original PVDF membrane surface.
Fig. S5. EDS spectra of the loess-coated PVDF membrane.
Fig. S6. XRD patterns of the acidifying loess powders.
Fig. S7. The FT-IR spectra of the sodium alginate.
Fig. S8. (a) Photograph of the loess-coated PVDF membrane. (b) The vacuum driven
filtration system.
Fig. S9. Optical microscope images, photographs, and droplet size of different
stabilized emulsions and filtrates. (a) diesel-in-water emulsion, (b) hexane-in-water
emulsion, (c) heptane-in-water emulsion and (d) petroleum ether-in-water emulsion.
Fig. S10. The water flux of the pure PVDF and loess-coated PVDF membrane.
Fig. S11. The oil content in water of hexane-in-water emulsion after 10 separation
cycles.
Fig. S12. The permeation flux of the loess-coated membrane for cyclic separation
experiments containing permeation fluxes of water and surfactant-stabilized hexane-
in-water emulsion.
Fig. S13. The digital images of the kerosene-in-water emulsion before and after one-

time separation by the original PVDF membrane (the middle vial) and the loess-



coated membrane (the right vial).

Fig. S14. The sodium alginate bonding mechanism with the loess.

Fig. S15. Optical microscope images and droplet size distributions of the feed and
filtrate for (a) kerosene-in-NaCl, (b) kerosene-in-NaOH, (¢) crude-in-NaCl, (d) crude-
in-NaOH corrosive emulsions.

Fig. S16. The FE-SEM images of loess-coated PVDF membrane after separation of
(a) kerosene-in-Water, (b) kerosene-in-NaCl, (c) kerosene-in-HCI, and (d) kerosene-
in-NaOH emulsions, respectively.

Fig. S17. The photographs of dyes at different concentrations and the loess-coated
membrane before and after dye adsorption.

Fig. S18. The EDS spectra of the loess-coated PVDF membranes after the adsorption
of (a) Cu?*, (b) Pb?" and (c) Zn?", respectively.

Movie S1. The video of separating kerosene-in-water emulsion using the loess-coated
PVDF membrane.

Movie S2. The video of separating kerosene-in-water emulsion using the pure PVDF

membrane.



Fig. S1. The cross-sectional image of the original PVDF membrane.
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Fig. S2. The particle size distribution of the loess pretreated with HCI solution.
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Fig. S3. Pore size distribution and average pore size of the loess-coated PVDF

membrane.
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Fig. S4. AFM image of the original PVDF membrane surface.
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Fig. S5. EDS spectra of the loess-coated PVDF membrane.
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Fig. S6. XRD patterns of the acidified loess powders.
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Fig. S7. The FT-IR spectra of the sodium alginate.

Fig. S8. (a) Photograph of the loess-coated PVDF membrane. (b) The vacuum driven

filtration system.
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Fig. S9. Optical microscope images, photographs, and droplet size of different
stabilized emulsions and filtrates. (a) diesel-in-water emulsion, (b) hexane-in-water

emulsion, (c) heptane-in-water emulsion and (d) petroleum ether-in-water emulsion.
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Fig. S10. The water flux of the pure PVDF and loess-coated PVDF membrane.
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Fig. S11. The oil content in water of hexane-in-water emulsion after 10 separation

cycles.
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Fig. S12. The permeation flux of the loess-coated membrane for cyclic separation
experiments containing permeation fluxes of water and surfactant-stabilized hexane-

in-water emulsion.
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Fig. S13. The digital images of the kerosene-in-water emulsion before and after one-
time separation by the original PVDF membrane (the middle vial) and the loess-

coated membrane (the right vial).
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Fig. S14. The sodium alginate bonding mechanism with the loess.
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Fig. S15. Optical microscope images and droplet size distributions of the feed and
filtrate for (a) kerosene-in-NaCl, (b) kerosene-in-NaOH, (c) crude-in-NaCl, (d) crude-

in-NaOH corrosive emulsions.



Fig. S16. The FE-SEM images of loess-coated PVDF membrane after separation of
(a) kerosene-in-Water, (b) kerosene-in-NacCl, (c¢) kerosene-in-HCI, and (d) kerosene-

in-NaOH emulsions, respectively.
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Fig. S17. The photographs of dyes at different concentrations and the loess-coated

membrane before and after dye adsorption.
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Fig. S18. The EDS spectra of the loess-coated PVDF membranes after the adsorption

of (a) Cu?*, (b) Pb?" and (c) Zn?", respectively.
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