A simple route to synthesize esterified lignin derivatives

Li-Yang Liu^a, Qi Hua^a, and Scott Renneckar*^a

^aDepartment of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada

Email: scott.renneckar@ubc.ca

Table of contents

Figure S1	Page 2
Figure S2	Page 3
Figure S3	Page 4
Figure S4	Page 5
Figure S5	Page 6
Figure S6	Page 7
Figure S7	Page 8
Figure S8	Page 9
Figure S9	Page 10
Figure S10	Page 11
Table S1	Page 12
Table S2	Page 13
Table S2	Page 14

Figure S1 the operating process of direct esterification using propionic acid to obtain propionated HELignin

Figure S2 the operating process of direct esterification using valeric acid, octanoic acid, and oleic acid to obtain esterified HELignin

Figure S3 ¹³C NMR spectrum of SKL (a), propionated SKL (120°C, 24 h, b), OSHL (c), and propionated OSHL (120 °C, 24h, d)

Figure S4 The molecular weight traces of SKL (a) and OSHL before (dark line) and after (red dash) esterification using propionic acid at 120 °C for 24 h

Figure S5 DSC traces and glass transition temperature (T_g) of SKL (a), propionate SKL (b), OSHL (c), and propionate OSHL (d)

Figure S6 ¹³C NMR spectrum of HESKL (untreated, a), propionate HESKL (90°C, 24 h, b), propionate HESKL (120 °C, 48 h, c) and HEOSHL (untreated, d), propionate HEOSHL (90°C, 24h, e), and propionate HEOSHL (120 °C, 48 h)

Figure S7 Molecular weight traces of HESKL (a) and HEOSHL (b); (untreated, black line), propionate HELignin (90°C, 24 h, red short dash line), propionate HElignin (120 °C, 48 h, blue dot line)

Figure S8 DSC traces and glass transition temperature (T_g) of HESKL (untreated, a), propionate HESKL (90°C, 24 h, b), propionate HESKL (120 °C, 48 h, c) and HEOSHL (untreated, d), propionate HEOSHL (90°C, 24h, e), and propionate HEOSHL (120 °C, 48 h)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical shift(ppm)

Figure S9 ¹³C NMR spectrum of valerate lignin HESKL (a), octanoate HESKL (b), oleate HESKL (c) and valerate HEOSHL (d), octanoate HEOSHL (e), and oleate HEOSHL

Figure S10 DSC traces and glass transition temperature (T_g) of valerate lignin HESKL (a), octanoate HESKL (b), oleate HESKL (c) and valerate HEOSHL (d), octanoate HEOSHL (e), and oleate HEOSHL

Table S1 Quantitative ³¹P NMR and semi-quantitative ¹³C NMR analysis of softwood kraft lignin (SKL), propionate SKL (PSKL), hydroxyethyl SKL (HESKL), organosolv hardwood lignin (OSHL), propionate OSHL (POSHL), and hydroxyethyl OSHL (HEOSHL)

	Syringyl	5-substituted	Guaiacyl	p-hydroxyphenyl	Total aromatic	ArH ^a
	/(mmol/g)	/(mmol/g)	/(mmol/g)	/(mmol/g)	OH/(mmol/g)	/(100Ar)
SKL	n.a.	1.68	1.48	0.33	3.49	230
PSKL	n.a.	1.36	1.45	0.24	3.05	231
HESKL	n.a.	0.25	0.14	0.03	0.42	
OSHL	2.34	0.34	1.10	0.29	4.07	201
POSHL	2.08	0.32	0.95	0.25	3.60	201
HEOSHL	0.08	0.08	0.04	0.21	0.41	

^a ArH: aromatic carbon linked with hydrogen

Table S2 Semi-quantitative ¹³C NMR analysis of HELignin and esterified HELignin using propionic acidwith different conditions, the aromatic carbon region (160~100 ppm) was set as 100 Ar;

No. Lignin	Temp(°C) /time(h)	Peak 1/100 Ar (175~170 ppm)	Peak 2/100 Ar (10~8 ppm)	Peak 3/100 Ar (61.5~58 ppm)	Peak 4/100Ar (65~61.5 ppm)	ArH ^a /100Ar (125~100 ppm)
		Lignin –o		Lignin O	Lignin -o	
HESKL						
(a)	untreated	-	-	74	14	206
(b)	90/24	57	58	39	54	212
(c)	120/48	82	72	11	72	210
HEOSHI	-					
(d)	untreated	-	-	72	20	207
(e)	90/24	51	47	43	49	205
(f)	120/48	82	81	19	71	203

^a ArH: aromatic carbon linked with hydrogen;

No.	Lignin	acid	Peak 3 (61.5~58 ppm)/100 Pr	Peak 4 (65~61.5 ppm)/100 Pr
			Lignin –O	
	HESKL			
(a)		Valeric (C ₅)	17	83
(b)		Octanoic (C ₈)	19	81
(c)		Oleic (C ₁₈)	15	85
	HEOSHL			
(d)		Valeric (C ₅)	21	79
(e)		Octanoic (C ₈)	19	81
(f)		Oleic (C ₁₈)	23	77

Table S3 Semi-quantitative ¹³C NMR analysis of HELignin and esterified HELignin using valeric acid (C_5), octanoic acid(C_8), and oleic acid (C_{18}), the peak 3 + peak 4 (65~58 ppm) were set as 100,