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Fig. S1 Correlation of OD800 and OD600 measurements. 

 

 

Fig. S2 Sugar conversion during pretreatment process of sorghum biomass. 

 

 



 

 
Fig. S3 Growth profiles of BlueBelle (top) and IFO0880 (wt, bottom) in synthetic defined media 
cultivated at different temperatures. OD800 values, depicted in green, and the culture pH shown 
as black rhombus, are plotted against time. Error bars represent SD of triplicates.  
  
 
 

 
 
Fig. S4 Production profile of indigoidine cultures after 3 days (left) and 5 days (right) of cultivation 
at different temperatures. Indigoidine concentrations (blue bars) OD800 values (green dots) and 
culture pH (black rhombus) were measured. Error bars represent SD of 3 replicates.  
 
 

 
 
Fig. S5 Coloration of supernatant after 5 days of cultivation at two different temperatures.  
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Fig. S6 Effect of pH and redox state on hue of the solution. A UV-Vis spectra of indigoidine 
solutions with pH ranging from 9 to 2 in intervals of 1. B Re-adjustment of the pH from acidic (pH 
2) and alkaline (pH 9) to neutral (pH 7). C UV-Vis spectra of indigoidine solutions at pH 2, 7 and 
9 after oxidation with hydrogen peroxide and reduction with dithionite, respectively. D Top The 
solution of indigoidine displays an increasingly intense hue of red when the pH decreases. 
Representative solutions are shown. Bottom Structural derivatives of indigoidine observed in this 
study shown in corresponding colors. Indigoidine can undergo hydrolysis to yield a red pigment, 
hydroxyidigoidine ((E)-5,5'-dihydroxy-2H,2'H-[3,3'-bipyridinylidene]-2,2',6,6'(1H,1'H) -tetraone, 
top left), which can react with NH4OH to obtain indigoidine reversibly. Alternatively, 
hydroxyidigoidine can be deprotonated by NaOH and form a blue alkali metal adduct (bottom left). 
In the presence of air, any form of indigoidine (i.e. indigoidine and hydroxyidigoidine) can be 
oxidized to form a ketone, [3,3'-bipyridine]-2,2',5,5',6,6'(1H,1'H) -hexaone (bottom right), with a 
characteristic orange color. The depiction of structures is adapted from Kuhn et al. 11 
 
 
 
 

 

 



 

 

Fig. S7 Top Impact of C/N ratio on the indigoidine production and culture pH after 3 (light blue) 
and 7 days (dark blue) of cultivation using 100 g/L glucose and varying amounts of urea as carbon 
and nitrogen source respectively. Error bars represent SD of 3 replicates. Bottom Images of the 
culture broth after 3 days and the supernatant of the cultures after 7 days. 
 

 

 

 

 



Fig. S8 Left After extraction and purification of indigoidine as described in the Experimental 
section, a dry powder was obtained. The picture shows the final product (400 mg dry Indigoidine) 
extracted and purified from 400 mL culture broth from a shake flask experiment using glucose as 
carbon source after 2.5 days at a concentration of 2 g/L. Right NMR analysis was performed to 
confirm the chemical structure and purity of the compound. Acetone and hexanes were used in 
the washing process.   
 

Table S1 Normalized Nitrogen sources  

The amount of nitrogen sources was calculated to the equivalent of 1.06 g nitrogen/L. For the 

complex nitrogen sources the following assumptions were made in agreement with 

manufacturer’s description: Nitrogen content of Yeast extract = 10.9% (BD), peptone= 16% and 

of soy peptone = 8.1%.  

Nitrogen Source Amount 

Ammonium sulfate 5 g/L 

Urea 2.27 g/L 

Glutamine 5.53 g/L 

Glutamate 11.12 g/L 

Potassium nitrate 7.62 g/L 

Yeast extract 9.71 g/L 

Peptone 6.62 g/L 

Soy Peptone 13.07 g/L 
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