Electronic Supplementary Information (ESI) for

Oxidation of a wood extractive betulin to biologically active oxo-derivatives using supported gold catalysts

Ekaterina N. Kolobova,^a Ekaterina G. Pakrieva,^a Sonia A.C. Carabineiro,^b Nina E. Bogdanchikova,^c Andrey N. Kharlanov,^d Sergey O. Kazantsev,^e Jarl Hemming,^f Päivi Mäki-Arvela,^f Alexey N. Pestryakov,^a Dmitry Yu. Murzin^{*f}

[a] Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia

[b] Laboratory of Catalysis and Materials (LCM), Associate Laboratory LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal

[c] Centro de Nanociencias y Nanotecnología, UNAM, Post box 14, 22860 Ensenada, México

[d] Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia

[e] Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS), pr. Akademicheskii 2/4, 634055 Tomsk, Russia

[f] Johan Gadolin Process Chemistry Centre, Abo Akademi University, FI-20500 Turku, Finland

*corresponding author: dmurzin@abo.fi; Fax:+ 358 2 215 4479; Tel: +358 2 215 4985

Figure S1. XRD patterns for gold catalysts and the corresponding supports.

Figure S2. Au particle size distribution and TEM/STEM micrographs of studied catalysts, previously published in¹.

Figure S3. NH₃-TPD profiles of (A) TiO₂, (B) CeO₂/TiO₂, (C) La₂O₃/TiO₂, (D) Au/TiO₂_pH₂, (E) Au/TiO₂_pO₂, (F) Au/CeO₂/TiO₂_pH₂, (G) Au/CeO₂/TiO₂_pO₂, (H) Au/La₂O₃/TiO₂_pH₂, (I) Au/La₂O₃/TiO₂_pO₂

Figure S4. CO₂-TPD profiles of (A) TiO₂, (B) CeO₂/TiO₂, (C) La₂O₃/TiO₂, (D) Hydrotalcite; (E) Au/TiO₂_pH₂, (F) Au/TiO₂_pO₂, (G) Au/CeO₂/TiO₂_pH₂, (H) Au/CeO₂/TiO₂_pO₂, (I) Au/La₂O₃/TiO₂_pH₂, (J) Au/La₂O₃/TiO₂_pO₂

Figure S5. SEC chromatogram of extracted oligomers and polymers from surface of spent catalyst.

Constant	Units	Value
$ ho_{k_1}$	S ⁻¹	0.016
$ ho_{k_2}$	S ⁻¹	0.06
$ ho_{k_4}$	S ⁻¹	0.05
$ ho_{k_5}$	S ⁻¹	0.22
ρ _{k-5}	S ⁻¹	1.1
K _D	-	183

Table S1. Calculated rate constants

Reference

[1] E. Pakrieva, E. Kolobova, G. Mamontov, N. Bogdanchikova, M. H. Farias, L. Pascual, V. Cortés Corberán, S. Martinez Gonzalez, S. A. C. Carabineiro, A. Pestryakov. Green oxidation of n-octanol on supported nanogold catalysts: Formation of gold active sites under combined effect of gold content, additive nature and redox pretreatment, *ChemCatChem* **2019**, 11, 1–11.