Supporting Information

Catalytic Production of Renewable Lubricant Base Oils from Bio-

Based 2-Alkylfurans and Enals

Sibao Liu, Basudeb Saha* and Dionisios G. Vlachos*

Catalysis Center for Energy Innovation

Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE

19716, USA

Corresponding authors' email: bsaha@udel.edu, vlachos@udel.edu

Scheme S1. Strategies for the synthesis of various 2-alkylfurans.

(a) 2-Methylfuran is produced by one-step hydrodeoxygenation (HDO) of biomass-derived furfural or in two steps from 2-hydroxymethylfurfural (HMF) involving decarbonylation of HMF to furfuryl alcohol, followed HDO of furfural alcohol over metal-based catalysts with over 90% yield. Furan is obtained by decarbonylation of furfural over a Pd/HY catalyst with the yield of 99% (ACS Catal., 2013, 3, 2655-2668).

(b) 2-Alkylfurans are synthesized by acylation of furan with carboxylic acids over a liquid catalyst (trifluoroacetic anhydride) or anhydrides of the carboxylic acids over zeolite catalysts, followed by HDO of the acylated intermediate over a commercial copper chromite (2CuO- Cr_2O_3) catalyst. The yield of the product in each step is above 90% with an overall yield of 2-alkylfurans of 87%. (ACS Cent. Sci., 2016, 2 (11), 820–824)

Scheme S2. Strategies for the synthesis of various enals.

Fig. S1 Time course of condensation of 2-pentylfuran and crotonaldehyde over Aquivion PW79S. Reaction conditions: 6 mmol 2-pentylfruan, 2 mmol crotonaldehyde, 0.05 g Aquivion PW79S and 65 °C.

Fig. S2 XRD patterns of the Ir-ReO_x/SiO₂ (Re/Ir=2) catalyst. a: after reduction, b: after 5

cycles.

Fig. S3 TEM images of the Ir-ReO_x/SiO₂ (Re/Ir=2) catalyst. (a): after reduction, (b): after 5

cycles.

Identification of the synthesized compounds C₂₅ condensed furan: CA-HAA of 2-propylfuran + crotonaldehyde ¹H and ¹³C-NMR spectra

HR-MS-LIFDI: $C_{25}H_{34}O_3$ Calc. mass 382.2508; found mass 382.2514.

C₂₈ condensed furan: CA-HAA of 2-butylfuran + crotonaldehyde

¹H and ¹³C-NMR spectra

7

HR-MS-LIFDI: $C_{28}H_{40}O_3$ Calc. mass 424.2977; found mass 424.2959.

$C_{31} \ condensed \ furan: CA-HAA \ of \ 2-pentyl furan + crotonal dehyde$

HR-MS-LIFDI: $C_{31}H_{46}O_3$ Calc. mass 466.3460; found mass 466.3447.

C₃₀ condensed furan: CA-HAA of 2-pentylfuran + acrolein

¹H and ¹³C-NMR spectra

11

HR-MS-LIFDI: $C_{30}H_{44}O_3$ Calc. mass 452.3290; found mass 452.3285.

C₃₃ condensed furan: CA-HAA of 2-pentylfuran + 2-methyl-2-pentenal

HR-MS-LIFDI: C₃₃H₅₀O₃ Calc. mass 494.3760; found mass 494.3793.

Base oil from HDO of C_{25} condensed furan

Base oil from HDO of C₂₈ condensed furan

Base oil from HDO of C₃₁ condensed furan

Base oil from HDO of C_{30} condensed furan

Base oil from HDO of C₃₃ condensed furan

