Supporting Information

Synthesis of functionalized tetrahydrofuran derivatives from 2,5dimethylfuran through cascade reactions

J. Li,^{a,b} E. Muller,^c M. Pera-Titus,^{b*}, F. Jérôme,^a and K. De Oliveira Vigier^{a*}

^a IC2MP UMR 7285 CNRS-Université de Poitiers-ENSIP, 1 rue Marcel Doré, TSA 41195, 86073 Poitiers Cedex 9, France, email: <u>karine.vigier@univ-poitiers.fr</u>

^b Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China, email: <u>marc.pera-titus-ext@solvay.com</u>

^c SOLVAY-Advanced Organic Chemistry & Molecule Design Laboratory, Recherche & Innovation Centre de Lyon, 85 Avenue des Frères Perret, 69192 Saint-Fons, France

Outline:

1.	Thermodynamic calculations	. 2
2.	IR spectroscopy analysis of A26.	. 2
3.	TGA analysis	.3
4.	XPS analysis	. 5
5.	¹ H and ¹³ C NMR spectra of products of interest	.7

1. Thermodynamic calculations

Fig S1. Equilibrium product yields as a function of temperature for different equivalents of benzaldehyde (calculations).

2. IR spectroscopy analysis of A26.

Fig S2. FT-IR spectroscopy of the fresh A26 (dry) and the spent A26 (dry).

3. TGA analysis

Fig S3. TGA analysis of fresh and spent A26 catalyst.

Fig S4. TGA analysis of fresh HTC-gas and HTC-liq catalysts.

Fig S5. TGA analysis of HTC-gas and HTC-liq catalysts after reaction.

Fig S6. TGA analysis of the reaction media after catalytic run in the presence of HTC.

4. XPS analysis

Figure S7. XPS analysis of the spent Pt/C after the 5th run.

Table S1: XPS analysis of spent and fresh catalyst

Element	Eb	RSF	Pt/C (Fresh)	Pt/C (After 5 runs)		
C1s	284.4	0.28	91.6	87		
01s	532	0.78	7.8	10.5		
Pt4f	71	5.58	0.6	0.4		
S2p	168	0.668		1.5		
N1s	400	0.477		0.6		
Ca2p			traces			
Eb: Binding Energy						

RSF: Relative Sensitivity Factor

Fig S8. Deconvolution for Pt for fresh catalyst (up) and spent catalyst (down)

5. ¹H and ¹³C NMR spectra of products of interest.

7-Phenylhept-6-ene-2,5-dione ¹H NMR (300 MHz, DMSO-*d*₆) δ = 7.72 (m, 2H, Ar), 7.64-7.60 (d, J = 16, 1H), 7.43 (m, 3H, Ar), 6.92-6.88 (d, J = 16, 1H), 2.91 (t, 2H), 2.73 (t, 2H), 2.13 (s, 3H). ¹³C NMR (75MHz, DMSO-*d*₆) δ = 207.21, 198.61, 142.04, 134.46, 130.47, 128.99, 128.45, 126.32, 36.67, 34.02, 29.73.

1,8-Diphenylocta-1,7-diene-3,6-dione ¹H NMR (300MHz, CDCl₃) δ = 7.66-7.61 (d, J = 20, 2H), 7.56 (m, 4H, Ar), 7.41 (m, 6H, Ar), 6.82-6.78 (d, J = 16, 2H), 3,11 (s, 4H). ¹³C NMR (75MHz, CDCl₃) δ = 198.83, 143.03, 134.64, 130.65, 129.10, 128.48, 126.25, 34.54.

7-Phenylheptane-2,5-dione ¹H NMR (300MHz, CDCl₃) δ = 7.28-7.21 (m, 5H, Ar), 2.93 (t, 2H), 2.82 (t, 2H), 2.72-2.70 (m, 4H), 2.21 (s, 3H). ¹³C NMR (75MHz, CDCl₃) δ = 208.59, 207.35, 141.11, 128.61, 128.41, 126.22, 44.40, 37.02, 36.34, 30.06, 29.82.

7-Phenylheptane-2,5-diol ¹H NMR (300MHz, CDCl₃): $\delta = 7.19-7.14$ (m, 5H, Ar), 3,75 (m, 1H), 3.60 (m, 1H), 2.69-2.62 (m, 2H), 1.72 (m, 2H), 1.50 (m, 4H), 1.14-1.12 (d, 3H). ¹³C NMR (75MHz, CDCl₃) $\delta = 142.23$, 128.53, 125.94, 71.74, 71.26, 68.58, 68.08, 39.52, 39.17, 35.98, 35.01, 34.40, 33.46, 32.28, 32.25, 24.00, 23.66.

2-Methyl-5-phenethyltetrahydrofuran ¹H NMR (300MHz, CDCl₃) δ = 7.27-7.21 (m, 5H, Ar), 4.11-3.82 (m, 2H), 2.75-2.64 (m, 2H), 2.04-1.78 (m, 4H), 1.55-1.49 (m, 2H), 1.27-1.22 (d, d, 3H). ¹³C NMR (75MHz, CDCl₃) δ = 142.40, 128.43, 125.83, 78.95, 78.19, 75.40, 74.65, 37.98, 34.07, 33.02, 32.71, 32.65, 32.44, 31.40, 21.60, 21.52.

2-(2-Cyclohexylethyl)-5-methyltetrahydrofuran ¹H NMR (300MHz, CDCl₃): δ = 3.93 (m, 1H), 3.74 (m, 1H), 1.94 (m, 2H), 1.69 (m, 5H), 1.43 (m, 4H), 1.24-1.22 (d, 3H), 1.20 (m, 10H). ¹³C NMR (75MHz, CDCl₃): δ = 80.12, 75.23, 37.95, 34.01, 33.66, 33.53, 33.46, 32.98, 31.42, 26.86, 26.54, 21.57.