Supporting Information for:

Triple Copper Catalysis for the *one-pot* Synthesis of Vinyl Triazoles

Lucas Loss Baldassari, Eduardo Antônio Cechinatto and Angélica V. Moro*

angelica.venturini@ufrgs.br

Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil.

SUPPORTING INFORMATION

CONTENTS

1. General Information	S02
2. General procedure for the synthesis of vinyl triazoles from alkynes	S03
3. NMR Spectra	S12

1. General Information.

For the synthesis of the starting materials, all solvents were distilled from appropriate drying agents prior to use. For the synthesis of vinyl triazoles, ethanol HPLC grade was used. All reagents were used as received from commercial suppliers unless otherwise stated. Reaction progress was monitored by thin layer chromatography (TLC) performed on aluminum plates coated with silica gel F254 with 0.2 mm thickness. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining using vanillin solution. Flash column chromatography was performed using silica gel 60 (230-400 mesh, Merck and co.). ESI-QTOF-MS measurements were performed in the positive ion mode (m/z 50-2000 range). IR spectra were obtained on a FTIR-ATR instrument. All ¹H NMR and ¹³C NMR spectra were recorded using a 400 MHz, spectrometer at 298K (frequencies for ¹H). Chemical shifts were given in parts per million (ppm, δ), referenced to the solvent peak of TMS, defined at δ = 0.00 ppm (¹H NMR) and δ = 77.0 (¹³C NMR). Coupling constants are quoted in Hz (J). ¹H NMR splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), sextet (sext) and septet (sept). Splitting patterns that could not be interpreted or easily visualized were designated as multiplet (m). All acetylenic ester were synthetized following the same procedure reported by Santos.¹

¹ Peck, C. L.; Calderoni, J. A.; Santos, W. L. Synthesis **2015**, 47, 2242–2248.

2. General procedure for the synthesis of vinyl triazoles from alkynes

STEP 1: In a open air flask were added $CuSO_4.5H_2O$ (0.05 mmol, 12.5 mg, 10 mol%), bis(pinacolato)diboron (0.325 mmol, 82.5 mg, 0.65 equiv.), 4-picoline (0.25 mmol, 25 µL, 0.5 equiv.), ethanol (1 mL, HPLC grade), and alkyne (0.5 mmol, 1.0 equiv.). The solution was heated to 45 °C (oil bath temperature) and after 10 minutes additional amount of bis(pinacolato)diboron (0.325 mmol, 82.5 mg, 0.65 equiv.) was added. The reaction kept stirring for 20 hours at 45 °C. **STEP 2:** Next, B(OH)₃ (1.1 mmol, 68 mg, 2.2 equiv.), sodium azide (0.75 mmol, 49 mg, 1.5 equiv.) and ethanol (1 mL, HPLC grade) were added and the reaction kept stirring for 20 hours at 45 °C. **STEP 3:** Then, sodium ascorbate (0.015 mmol, 3 mg), deionized water (1 mL) and alkyne (0.75 mmol, 1.5 equiv.) were added to the reaction that remained stirring for another 20 hours at 45 °C. The aqueous layer was extracted with AcOEt (3x). The combined organic layers were dried on MgSO₄, filtered and concentrated in vacuo. The product was purified on column chromatography using hexane and ethyl acetate as eluent.

Ethyl (*E*)-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)but-2-enoate (**4a**)

White solid. **Yield**: 70 mg, 52%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.88 - 7.84 (m, 2H), 7.47 - 7.42 (m, 2H), 7.40 - 7.34 (m, 1H), 6.55 (q, *J* = 1.0 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.87 (d, *J* = 1.0 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.6, 148.2, 147.3, 129.6, 128.9, 128.6, 125.8, 116.8, 109.2, 60.6, 15.6, 14.2. **IR** (v_{max}, cm⁻¹): 3132, 2989, 1706,

1652, 1365, 1207, 1149, 1008, 763, 692. **HRMS** (ESI+): exact mass calculated for $[M+H]^+$ (C₁₄H₁₆N₃O₂) requires *m*/*z* 258.1242, found: *m*/*z* 258.1224.

Ethyl (*E*)-3-(4-(4-nitrophenyl)-1*H*-1,2,3-triazol-1-yl)but-2-enoate (**4b**)

White Solid. Yield: 39 mg, 26%. ¹H NMR (400 MHz, CDCl₃) δ 8.34
- 8.29 (m, 2H), 8.25 (s, 1H), 8.08 - 8.03 (m, 2H), 6.61 (q, J = 1.1 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 2.89 (d, J = 1.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 147.6, 146.9, 146.1, 135.9, 126.3, 124.4, 118.4, 110.2, 60.9, 15.7, 14.2. IR (v_{max}, cm⁻¹): 3144, 2989, 1703, 1634, 1602, 1502, 1348, 1284, 1030, 852,

751. **HRMS** (ESI+): exact mass calculated for $[M+H]^+$ (C₁₄H₁₅N₄O₄) requires *m*/*z* 303.1093, found: *m*/*z* 303.1093.

Ethyl (E)-3-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)but-2-enoate (**4c**)

White solid. **Yield**: 34 mg, 25%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.88 – 7.80 (m, 2H), 7.18 – 7.10 (m, 2H), 6.54 (q, *J* = 0.9 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.88 (d, *J* = 0.9 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.6, 162.9 (d, *J* = 248.3 Hz), 147.4, 147.3, 127.6 (d, *J* = 8.3 Hz), 125.8 (d, *J* = 3.3 Hz), 116.6, 116.0 (d, *J* = 21.8 Hz), 109.3, 60.7, 15.7, 14.2. **IR** (v_{max}, cm⁻)

¹): 3111, 2978, 2920, 1714, 1657, 1230, 1150, 1014, 817, 692. **HRMS** (ESI+): exact mass calculated for $[M+H]^+$ (C₁₄H₁₆N₃O₂F) requires *m*/*z* 276.1148, found: *m*/*z* 276.1147.

Ethyl (*E*)-3-(4-(p-tolyl)-1*H*-1,2,3-triazol-1-yl)but-2-enoate (**4d**)

White solid. **Yield**: 44 mg, 33%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.80 - 7.70 (m, 2H), 7.27 - 7.24 (m, 2H), 6.53 (q, *J* = 1.0 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.88 (d, *J* = 1.0 Hz, 3H), 2.39 (s, 3H), 1.34 (t, *J* = 7,1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7, 148.4, 147.5, 138.7, 129.6, 126.8, 125.8, 116.4, 109.0, 60.7, 21.3, 15.7, 14.2. **IR** (v_{max}, cm⁻¹): 3150, 2980, 2937, 1711, 1654, 1236,

1202, 1148, 1010, 797. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ (C₁₅H₁₈N₃O₂) requires *m*/*z* 272.1399, found: *m*/*z* 272.1400.

Methyl (*E*)-4-(1-(4-ethoxy-4-oxobut-2-en-2-yl)-1*H*-1,2,3-triazol-4-yl)benzoate (**4e**)

White solid. **Yield**: 32 mg, 20%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 – 8.10 (m, 3H), 7.98 - 7.92 (m, 2H), 6.58 (q, *J* = 0.7 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.95 (s, 3H), 2.89 (d, *J* = 0.7 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.6, 165.6, 147.3, 147.2, 133.9, 130.3, 130.1, 125.7, 117.7, 109.7, 60.8, 52.2, 15.7, 14.2. **IR** (v_{max}, cm⁻¹): 3151, 2984, 2924,

1713, 1658, 1633, 1237, 1181, 1020, 761, 686. **HRMS** (ESI+): exact mass calculated for [M+Na]⁺ (C₁₆H₁₇N₃O₄Na) requires *m*/*z* 338.1117, found: *m*/*z* 338.1116.

Ethyl (E)-3-(4-(4-methoxy-2-methylphenyl)-1H-1,2,3-triazol-1-yl)but-2-enoate (4f)

White solid. Yield: 31 mg, 20%. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.73 – 7,66 (m, 1H), 6.86 – 6.81 (m, 2H), 6.51 (q, J = 1.1 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 2.89 (d, J = 1.1 Hz, 3H), 2.47 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 159.7, 147.6, 137.4, 130.3, 121.7, 118.3, 116.4 (2C), 111.5, 108.9, 60.7, 55.3, 21.6, 15.7, 14.2. IR (v_{max},

cm⁻¹): 3185, 2977, 2901, 1715, 1643, 1200, 1145, 1045, 1017, 874, 783. **HRMS** (ESI+): exact mass calculated for $[M+H]^+$ ($C_{16}H_{20}N_3O_3$) requires *m/z* 302.1505, found: *m/z* 302.1505.

Ethyl (E)-3-(4-butyl-1H-1,2,3-triazol-1-yl)but-2-enoate (4g)

Yellow solid. Yield: 40.3 mg, 37%. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 6.43, (q, *J* = 1.1 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.20 (d, *J* = 1.1 Hz, 3H), 2.75 (t, *J* = 7.6 Hz, 2H), 1.68 (quint, *J* = 7.6 Hz, 2H), 1.38 (sext, *J* = 7.6 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.95 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 149.1, 147.6, 118.1, 108.5, 60.5, 32.2, 25.2, 22.2,

15.6, 14.2, 13.7. **IR** (v_{max} , cm⁻¹): 3149, 2957, 2834, 1714, 1650, 1211, 1145, 1038, 985. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ ($C_{12}H_{20}N_3O_2$) requires *m*/*z* 238.1555, found: *m*/*z* 238.1554.

Ethyl (*E*)-3-(4-heptyl-1*H*-1,2,3-triazol-1-yl)but-2-enoate (**4h**)

Yellow solid. **Yield**: 35.7 mg, 27%. ¹**H NMR** (400 MHz, CDCl₃) $^{-OEt}$ δ 7.59 (s, 1H), 6.43 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.83 (s, 3H), 2.74 (t, *J* = 7.6 Hz, 2H), 1.69 (quint, *J* = 7.6 Hz, 2H), 1.40 - 1.23 (m, 11H), 0.88 (t, *J* = 6.5 Hz, 3H). ¹³**C NMR** (100 MHz,

CDCl₃) δ 165.8, 149.2, 147.6, 118.1, 108.1, 60.6, 31.7, 29.2, 29.1, 29.0, 25.5, 22.6, 15.6, 14.2, 14.0. **IR** (v_{max}, cm⁻¹): 3149, 2928, 2856, 1715, 1651, 1210, 1145, 1039, 984. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ (C₁₅H₂₆N₃O₂) requires *m/z* 280.2025, found: *m/z* 280.2024.

Ethyl (*E*)-3-(4-cyclopropyl-1*H*-1,2,3-triazol-1-yl)but-2-enoate (**4i**)

Yellow solid. **Yield**: 54 mg, 50%. ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (s, 1H), 6.42 - 6.40 (m, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 2.80 (d, *J* = 1.0 Hz, 3H), 2.02 - 1.93 (m, 1H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.03 - 0.97 (m, 2H), 0.92 - 0.87 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.8, 150.9, 147.5, 117.4, 108.4, 60.5, 15.5, 14.2, 7.8, 6.5. **IR** (v_{max}, cm⁻¹): 3096, 2980, 1712, 1652, 1208, 1148,

1026, 873. **HRMS** (ESI+): exact mass calculated for $[M+H]^+$ (C₁₁H₁₆N₃O₂) requires *m*/*z* 222.1243, found: *m*/*z* 222.1242.

Ethyl (*E*)-3-(4-(cyclohex-1-en-1-yl)-1*H*-1,2,3-triazol-1-yl)but-2-enoate (**4j**)

Yellow solid. Yield: 37.6 mg, 30%. ¹H NMR (500 MHz, CDCl₃) δ 7.67
(s, 1H), 6.66 - 6.63 (m, 1H), 6.46 - 6.44 (m, 1H), 4.25 (q, J = 7.1 Hz, 2H), 2.83 (d, J = 0.9 Hz, 3H), 2.40 - 2.35 (m, 2H), 2.25 - 2.20 (m, 2H), 1.82 - 1.75 (m, 2H), 1.72 - 1.65 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C
NMR (100 MHz, CDCl₃) δ 165.8, 150.0, 147.6, 126.6, 126.4, 115.3,

108.5, 60.6, 26.9, 25.3, 22.3, 22.1, 15.6, 14.2. **IR** (v_{max} , cm⁻¹): 3124, 2927, 2834, 1711, 1652, 1208, 1151, 1004, 800. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ ($C_{14}H_{20}N_3O_2$) requires *m*/*z* 262.1555, found: *m*/*z* 262.1552.

Ethyl (*E*)-3-(4-(acetoxymethyl)-1*H*-1,2,3-triazol-1-yl)but-2-enoate (4k)

Ethyl (*E*)-3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-1*H*-1,2,3-triazol-1-yl)but-2-enoate (4I)

Yellow Oil. **Yield**: 74.6 mg, 45%. ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (t, J = 0.7 Hz, 1H), 6.45 (q, J = 1.0 Hz, 1H), 4.85 (d, J = 0.7 Hz, 2H), 4.23 (q, J = 7.2 Hz, 2H), 2.81 (d, J = 1.0 Hz, 3H), 1.31 (t, J = 7.2 Hz, 3H), 0.91 (s, 9H), 0.11 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7, 149.4, 147.5, 119.1, 109.0, 60.6, 57.7, 25.8, 18.3, 15.7, 14.2, 5.3. **IR**

(v_{max}, cm⁻¹): 3150, 2954, 2858, 1715, 1652, 1146, 1036, 834, 776. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ (C₁₇H₂₈N₃O₃Si) requires *m/z* 326.1900, found: *m/z* 326.1900.

Ethyl (*E*)-1-(4-ethoxy-4-oxobut-2-en-2-yl)-1*H*-1,2,3-triazole-4-carboxylate (**4m**)

Pale Yellow solid. **Yield**: 46.2 mg, 37%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (s, 1H), 6.65 (q, *J* = 1.1 Hz, 1H), 4.45 (q, *J* = 7.2 Hz, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.83 (d, *J* = 1.1 Hz, 3H), 1.43 (t, *J* = 7.2 Hz, 3H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.3, 160.3, 146.5, 140.7, 125.1, 111.3, 61.7, 61.0, 15.7, 14.3, 14.2. **IR** (v_{max}, cm⁻¹): 3139, 2985, 1722, 1706, 1650, 1264, 1181, 1037, 856, 773. **HRMS** (ESI+): exact

mass calculated for [M+Na]⁺ (C₁₁H₁₅N₃O₄Na) requires *m*/*z* 276.0960, found: *m*/*z* 276.0960.

Ethyl (*E*)-3-(4-(trimethylsilyl)-1*H*-1,2,3-triazol-1-yl)but-2-enoate (**4n**)

(C₁₁H₂₀N₃O₂Si) requires *m*/*z* 254.1325, found: *m*/*z* 254.1323.

Ethyl (*E*)-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)hept-2-enoate (**4o**)

Yellow solid. **Yield**: 32.9 mg, 22%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.91 – 7.82 (m, 2H), 7.48 – 7.41 (m, 2H), 7.39 – 7.34 (m, 1H), 6.39 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.41 – 3.35 (m, 2H), 1.60 (quint, *J* = 7.2 Hz, 2H), 1.44 (sext, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.3, 152.3, 148.2, 129.7, 129.0, 128.7,

125.85, 117.0, 109.35, 60.65, 30.4, 28.7, 22.5, 14.2, 13.7. **IR** (v_{max}, cm⁻¹): 2941, 2930, 1703, 1645, 1378, 1239, 1191, 1148, 1007. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ (C₁₇H₂₂N₃O₂) requires *m*/*z* 300.1712, found: *m*/*z* 300.1711.

Ethyl (*E*)-3-cyclopropyl-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)acrylate (**4p**)

Yellow solid. **Yield**: 30.3 mg, 23%. ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (s, 1H), 6.27 (s, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.36 – 3.26 (m, 2H), 1.97 (tt, *J* = 8.4, 5.1 Hz, 1H), 1.55 (quint, *J* = 7.2 Hz, 2H), 1.42 (sext, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.03 – 0.97 (m, 2H), 0.95 – 0.88 (m, 5H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.5, 152.4, 150.8, 117.4, 108.55, 60.5, 30.4, 28.6,

22.55, 14.2, 13.7, 7.9, 6.6. IR (v_{max}, cm⁻¹): 2958, 2931, 1715, 1644, 1437, 1377, 1182, 1144, 1029,

984. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ (C₁₄H₂₂N₃O₂) requires *m*/*z* 264.1712, found: *m*/*z* 264.1702.

Ethyl (*E*)-3-(4-(cyclohex-1-en-1-yl)-1*H*-1,2,3-triazol-1-yl)hept-2-enoate (**4q**)

Yellow solid. Yield: 30.5 mg, 20%. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s,
1H), 6.67 - 6.64 (m, 1H), 6.30 (s, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.38 - 3.32 (m, 2H), 2.41 - 2.35 (m, 2H), 2.28 - 2.20 (m, 2H), 1.83 - 1.75 (m, 2H), 1.73 - 1.65 (m, 2H), 1.59 - 1.51 (m, 2H), 1.42 (sext, J = 7.4 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 165.5, 152.5, 149.8, 126.5, 126.46, 115.5, 108.5, 60.5, 30.4, 28.6, 26.3, 25.3, 22.5, 22.3, 22.1, 14.2, 13.7. **IR** (v_{max}, cm⁻¹): 2932, 2864, 1716, 1645, 1438, 1375, 1235, 1190, 1148, 1042. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ (C₁₇H₂₆N₃O₂) requires *m/z* 304.2025, found: *m/z* 304.2016.

Ethyl (E)-3-(4-butyl-1H-1,2,3-triazol-1-yl)hept-2-enoate (4r)

Yellow solid. Yield: 39 mg, 28%. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, J = 0.7 Hz, 1H), 6.30 (s, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.38 – 3.29 (m, 2H), 2.75 (t, J = 7.4 Hz, 2H), 1.73 – 1.64 (m, 2H), 1.60 – 1.52 (m, 2H), 1.48 – 1.37 (m, 4H), 1.32 (t, J = 7.1 Hz, 3H), 0.98 – 0.90 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 152.5, 149.1, 118.3, 108.6, 60.5, 31.2, 30.4, 28.7, 25.2,

22.5, 22.3, 14.2, 13.8, 13.7. **IR** (v_{max} , cm⁻¹): 2957, 2930, 1716, 1644, 1441, 1376, 1186, 1145, 1039, 985. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ ($C_{15}H_{26}N_3O_2$) requires *m/z* 280.2025, found: *m/z* 280.2023.

Ethyl (*E*)-3-cyclopropyl-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)acrylate (4s)

Yellow solid. Yield: 65 mg, 46%. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H),
7.90 - 7.80 (m, 2H), 7.46 - 7.40 (m, 2H), 7.37 - 7.32 (m, 1H), 6.40 (d, J = 0.9 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.84 (ttd, J = 8.5, 5.4, 0.9 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.14 - 1.07 (m, 2H), 0.89 - 0.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 151.8, 147.4, 129.7, 128.9, 128.5, 125.7, 119.5,

115.8, 60.7, 14.2, 12.3, 8.5. **IR** (v_{max} , cm⁻¹): 3138, 3083, 2982, 1719, 1708, 1633, 1245, 1156, 1037, 765, 694. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ ($C_{16}H_{18}N_3O_2$) requires *m*/*z* 284.1399, found: *m*/*z* 284.1392.

Ethyl (E)-3-(4-phenyl-1H-1,2,3-triazol-1-yl)hex-2-enoate (4t)

Yellow solid. Yield: 34.2 mg, 24%. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.90 – 7.85 (m, 2H), 7.49 – 7.42 (m, 2H), 7.45 – 7.35 (m, 1H), 6.42 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.40 – 3.34 (m, 2H), 1.73 – 1.62 (m, 2H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.03 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 152.0, 148.2, 129.7, 128.9, 128.7, 125.9, 117.0, 109.6, 60.7, 30.6, 21.7,

14.2, 13.7. **IR** (v_{max}, cm⁻¹): 3040, 2927, 1717, 1649, 1264, 1202, 1155. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ (C₁₆H₂₀N₃O₂) requires *m*/*z* 286.1556, found: *m*/*z* 286.1553.

Ethyl (E)-3-(4-phenyl-1H-1,2,3-triazol-1-yl)oct-2-enoate (4u)

Yellow solid. Yield: 39 mg, 25%. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.90 – 7.84 (m, 2H), 7.49 – 7.42 (m, 2H), 7.41 – 7.34 (m, 1H), 6.40 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.41 – 3.35 (m, 2H), 1.70 – 1.57 (m, 2H), 1.47 – 1.34 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 3H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 152.3, 148.2, 129.7, 128.9, 128.7, 125.9, 117.0,

109.3, 60.7, 31.5, 28.9, 28.0, 22.3, 14.2, 13.9. **IR** (v_{max} , cm⁻¹): 3115, 2923, 1710, 1649, 1455, 1378, 1193, 1148, 1042, 1007, 871, 762, 692. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ ($C_{18}H_{24}N_3O_2$) requires *m/z* 314.1869, found: *m/z* 314.1868.

Ethyl (*E*)-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)dec-2-enoate (4v)

Yellow solid. Yield: 54.6 mg, 32%. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.89 – 7.85 (m, 2H), 7.49 – 7.43 (m, 2H), 7.40 – 7.35 (m, 1H), 6.40 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.44 – 3.31 (m, 2H), 1.66 – 1.58 (m, 2H), 1.45 – 1.38 (m, 2H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.30 - 1.22 (m, 6H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 152.3, 148.2, 129.7, 128.9,

128.7, 125.9, 117.0, 109.4, 60.7, 31.7, 29.4, 29.0, 28.9, 28.4, 22.6, 14.2, 14.1. **IR** (v_{max} , cm⁻¹): 3143, 2928, 2856, 1715, 1644, 1377, 1203, 1174, 1147, 1046, 1006, 761, 693. **HRMS** (ESI+): exact mass calculated for [M+Na]⁺ ($C_{20}H_{28}N_3O_2$) requires *m/z* 342.2182, found: *m/z* 342.2180.

Tert-butyl (*E*)-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)hept-2-enoate (**4w**)

White solid. **Yield**: 45.8 mg, 28%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.90 – 7.82 (m, 2H), 7.49 – 7.42 (m, 2H), 7.40 – 7.34 (m, 1H), 6.30 (s, 1H), 3.41 – 3.31 (m, 2H), 1.62 – 1.55 (m, 2H), 1.54 (s, 9H), 1.50 – 1.41 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.5, 151.0, 148.0, 129.7, 128.9, 128.6, 125.8, 117.1, 111.6, 81.3, 30.2, 28.6, 28.1,

22.5, 13.8. IR (v_{max}, cm⁻¹): 2945, 2927, 2878, 1710, 1650, 1456, 1141, 1016, 764, 692. HRMS

(ESI+): exact mass calculated for $[M+H]^+$ ($C_{19}H_{26}N_3O_2$) requires *m*/*z* 328.2025, found: *m*/*z* 328.2021.

Isobutyl (*E*)-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)hept-2-enoate (**4x**)

White solid. **Yield**: 55.6 mg, 34%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.92 – 7.83 (m, 2H), 7.48 – 7.39 (m, 2H), 7.40 – 7.32 (m, 1H), 6.42 (s, 1H), 3.98 (d, *J* = 6.6 Hz, 2H), 3.42 – 3.34 (m, 2H), 2.08 – 1.92 (m, 1H), 1.58 (quint, *J* = 7.3 Hz, 2H), 1.44 (sext, *J* = 7.3 Hz, 2H), 0.98 (d, *J* = 6.7 Hz, 6H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.4,

152.2, 148.1, 129.6, 128.9, 128.6, 125.8, 117.1, 109.3, 70.8, 30.3, 28.7, 27.7, 22.5, 19.1, 13.7. **IR** (v_{max} , cm⁻¹): 3128, 2956, 2928, 2872, 1714, 1648, 1484, 1195, 1152, 1050, 1015, 982, 860, 764, 691. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ ($C_{19}H_{26}N_3O_2$) requires *m*/*z* 328.2025, found: *m*/*z* 328.2034.

Benzyl (*E*)-3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)hept-2-enoate (4y)

White solid. **Yield**: 63.2 mg, 35%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.88 – 7.83 (m, 2H), 7.50 – 7.31 (m, 8H), 6.45 (s, 1H), 5.24 (s, 2H), 3.45 – 3.36 (m, 2H), 1.64 – 1.55 (m, 2H), 1.43 (sext, *J* = 7.3 Hz, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.1, 152.8, 148.2, 135.6, 129.6, 129.9, 128.7, 128.6, 128.4, 128.3, 125.9, 117.0, 108.8, 66.5, 30.4,

28.8, 22.6, 13.7. **IR** (v_{max} , cm⁻¹): 3132, 2959, 2928, 2858, 1712, 1653, 1389, 1187, 1141, 1017, 869, 763, 693, 593. **HRMS** (ESI+): exact mass calculated for [M+H]⁺ ($C_{22}H_{24}N_3O_2$) requires *m/z* 362.1869, found: *m/z* 362.1860.

NMR Spectra

