Electronic Supplementary Information For: Metal-free imidazolium hydrogen carbonate ionic liquids as bifunctional catalyst for the one-pot synthesis of cyclic

carbonates from olefins and CO2

Jia Liu[†], Guoqiang Yang[†], Ying Liu, Dongsheng Wu, Xingbang Hu* and Zhibing Zhang*

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.

1. Experimental method

1.1 Materials and characterization methods

Analytical-grade 1-ethyl-3-methylimidazolium bromide ($[C_1C_2Im][Br]$), 1-buty-3methylimidazolium bromide ($[C_1C_4Im][Br]$), and 1-hexyl-3-methylimidazolium bromide ($[C_1C_6Im][Br]$) were purchased from Shanghai Adamas-beta company. 1-methylimidazole, 1bromododecane, potassium bicarbonate, 1,3-bis(2,4,6-trimethylpheny)imidazolinium chloride, olefins, epoxides, and TBHP were purchased from Aladdin Reagent Corporation. CO₂ (99.99%) and commercially available reagents were used without further purification. The NMR spectra were recorded by using Bruker AC-400 MHz spectrometers. The reaction solution was analyzed by using a GC2014C gas chromatograph fitted with a RTX-5 column (30 m×0.32 mm×0.25 µm) and a flame ionization detector (FID). The structures of the product and byproducts were further identified by using GC-MS (type: GC-TOF).

1.2 Synthesis of [C₁C₁₂Im][Br]

A 50 mL 3-necked round-bottom glass flask was charged with a mixture of 1methylimidazole (50mmol), 1-bromododecane (50mmol), and CH₃OH (15mL). The mixture was stirred for 24 h at 80°C. After the reaction was completed, the CH₃OH was evaporated under vacuum. The final mixture was washed by hexane (3×10 mL) to remove the residual substrate. Then, the product was dried at 70 °C under vacuum for 12 h.

1.3 Synthesis of [C_nC_mIm][HCO₃] and SMes-CO₂

Imidazolium hydrogen carbonate ILs ([CnCmIm][HCO3]) were synthesized according to

our previous work¹. Briefly, an 50mL round bottom flask was charged with imidazolium bromide salt (0.1mol), KHCO₃ (0.11mol) and methanol (25mL). The mixture was stirred at room temperature for 36h. After the reaction was completed, the mixture was filtered and the filtrate was evaporated to remove methanol and dried under high vacuum. $[C_nC_mIm][HCO_3]$ was obtained as colorless or slight yellow oil.

Carbene-CO₂ adduct SMes-CO₂ were prepared according to the methods reported in the literature ^{2,3}. Briefly, an 50mL schlenk flask was charged with 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride (3 mmol) and potassium bis(trimethylsilyl)amide (3.1 mmol). The reactor was purged by vaccum/dry nitrogen cycles for three times. Then, dry THF (20mL) was added and the mixture was stirred at -30 °C for 2 hours. It was then allowed to stand for 2 hours. After that, dry CO₂ was bubbled into the obtained solution. After 4 hours, the solvent was evaporated under vaccum and the residue was washed with dry THF (5×10mL). After dry under vaccum, SMes-CO₂ was obtained as white powder.

1.4 Catalytic reactions

The epoxidation of olefin was carried out in a 25 mL 3-necked round-bottom glass flask equipped with a cryogenic-liquid condenser under atmospheric pressure. Typically, catalyst (1.25 mmol), olefin (20 mmol), TBHP (40 mmol) were added into the reactor. The mixture was stirred by a magnetic stirrer and heated to desired temperature in a water bath.

The cycloaddition reaction and one-pot synthesis of cyclic carbonates were conducted in a 25 mL stainless autoclave. The catalyst (1.25 mmol) and substrates (20 mmol) were charged into the stainless autoclave equipped with magnetic stirring and heating devices. The reactor was purged with CO_2 for three times and then charged with CO_2 . Next, the stainless autoclave was heated to desirable temperature and stirred for 30h. After the reaction is completed, the autoclave was cooled to room temperature, and the remaining CO_2 is slowly discharged from the reactor. The reaction solution was analyzed by using GC and GC-MS.

1.5 Procedure for the recycle of catalyst

After the catalytic reaction was completed and the remaining CO_2 was discharged from the reactor, the final mixture in the autoclave was dissolved in ethyl acetate (10 ml). Then adding diethyl ether (15 ml) to separate the catalyst and the separated catalyst was washed by diethyl ether (3×5ml). The recovered catalyst was dried 10h under vacuum and reused for the next running of catalytic reaction.

Reference:

[1] T. Zhao, X. Hu, D. Wu, R. Li, G. Yang and Y. Wu, *ChemSusChem*, 2017, **10**, 2046-2052.
[2] H. Zhou, W. Z. Zhang, C. H. Liu, J. P. Qu and X. B. Lu, *J. Org. Chem.*, 2008, **73**, 8039-8044.

[3] W. Zhenhong, Z. Wenbiao, L. Guangming, X. Feng, M. Yingxuan and C. Hu, J. Organomet. Chem., 2016, 808, 104-108.

2. Characterization results

The ¹H and ¹³C NMR spectra of [C₁C₂Im][HCO₃]

¹H-NMR, (400 MHz, DMSO-d₆)

[C₁C₂Im][HCO₃]: δ1.41-1.38 (t, 3H, -CH₃), 3.88 (s, 3H, N-CH₃), 4.26-4.20 (q, 2H, N-CH₂-),

7.80 (d, 1H,-CH=C-), 7.91 (d, 1H, -C=CH-), 9.44 (s, 1H, N-CH-N)

C1C2Im-CO2: 81.33-1.29 (t, 3H, -CH3), 3.95 (s, 3H, N-CH3), 4.49-4.44 (q, 2H, N-CH2-), 7.68

(d, 1H, -CH=C-), 7.76 (d, 1H, -C=CH-)

¹³C-NMR, (100 MHz, DMSO-d₆)

[C₁C₂Im][HCO₃]: δ 15.66 (-CH₃), 36.22 (N-CH₃), 44.46 (N-CH₂-), 122.42 (-CH=), 123.95

(=CH-), 136.80 (N-CH-N)

C₁C₂Im-CO₂: δ16.44 (-CH₃), 36.94 (N-CH₃), 44.55 (N-CH₂-), 120.99 (-CH=), 122.85 (=CH-), 142.05 (N-C-N), 154.72 (CO₂)

Fig. S1. ¹H NMR spectra of [C₁C₂Im][HCO₃] in DMSO

Fig. S2. ¹³C NMR spectra of $[C_1C_2Im][HCO_3]$ in DMSO

The ¹H and ¹³C NMR spectra of [C₁C₄Im][HCO₃]

¹H-NMR, (400 MHz, DMSO-d₆)

[C₁C₄Im][HCO₃]: δ 0.88-0.86 (t, 3H, -CH₃), 1.28-1.21 (m, 2H, -CH₂-), 1.80-1.72 (m, 2H, -

CH₂-), 3.89 (s, 3H, N-CH₃), 4.23-4.19 (t, 2H, N-CH₂-), 7.81 (d, 1H, -CH=C-), 7.89 (d, 1H, -C=CH-), 9.41 (s, 1H, N-CH-N)

C1C4Im-CO2: δ 0.85-0.82 (t, 3H, -CH3), 1.20-1.16 (m, 2H, -CH2-), 1.71-1.65 (m, 2H, - CH2-), 3.96 (s, 3H, N-CH3), 4.48-4.44 (t, 2H, N-CH2-), 7.66 (d, 1H, -CH=C-), 7.73 (d, 1H, -

C=CH-)

¹³C-NMR, (100 MHz, DMSO-d₆)

[C1C4Im][HCO3]: δ 13.73 (-CH3), 19.20 (-CH2-), 31.85 (-CH2-), 36.24 (N-CH3), 48.88 (N-

CH2-), 122.73 (-CH=), 124.00 (=CH-), 137.06 (N-CH-N)

C1C4Im-CO2: δ13.82 (-CH3), 19.38 (-CH2-), 32.60 (-CH2-), 36.94 (N-CH3), 48.66 (N-CH2-), 121.39 (-CH=), 122.73 (=CH-), 142.36 (N-C-N), 154.70 (CO2)

Fig. S3. ¹H NMR spectra of $[C_1C_4Im][HCO_3]$ in DMSO

Fig. S4. ¹³C NMR spectra of $[C_1C_4Im][HCO_3]$ in DMSO

The ¹H and ¹³C NMR spectra of [C₁C₄Im][Br]

¹H-NMR, (400 MHz, DMSO-d₆)

[C₁C₄Im][Br]: δ 0.89-0.85 (t, 3H, -CH₃), 1.24-1.22 (m, 2H, -CH₂-), 1.77-1.74 (m, 2H, -CH₂-),

3.88 (s, 3H, N-CH₃), 4.23-4.19 (t, 2H, N-CH₂-), 7.81 (d, 1H, -CH=C-), 7.89 (d, 1H, -

C=CH-), 9.40 (s, 1H, N-CH-N)

¹³C-NMR, (100 MHz, DMSO-d₆)

[C₁C₄Im][Br]: δ 13.75 (-CH₃), 19.20 (-CH₂-), 31.85 (-CH₂-), 36.26 (N-CH₃), 48.87 (N-CH₂-),

122.72 (-CH=), 123.99 (=CH-), 137.01 (N-CH-N)

Fig. S6. ¹³C NMR spectra of $[C_1C_4Im][Br]$ in DMSO

overlapped spectra of $[C_1C_4Im][Br]$ (red) and $[C_1C_4Im][HCO_3]$ (green) in DMSO

Fig. S8. ¹³C NMR overlapped spectra of [C₁C₄Im][Br] (red) and [C₁C₄Im][HCO₃] (green) in DMSO

The ¹H and ¹³C NMR spectra of [C₁C₆Im][HCO₃]

¹H-NMR, (400 MHz, DMSO-d₆)

[C₁C₆Im][HCO₃]: δ 0.76-0.73 (t, 3H, -CH₃), 1.17 (br, 6H, -C₃H₆-), 1.76-1.73 (m, 2H, -CH₂-),

3.91 (s, 3H, N-CH₃), 4.25-4.21 (t, 2H, N-CH₂-), 7.92 (d, 1H, -CH=C-), 8.02 (d, 1H, -

C=CH-), 9.64 (s, 1H, N-CH-N)

C1C6Im-CO2: δ 0.76-0.73 (t, 3H, -CH3), 1.17 (br, 6H, -C₃H₆-), 1.68-1.65 (m, 2H, -CH2-), 3.97 (s, 3H, N-CH3), 4.49-4.45 (t, 2H, N-CH2-), 7.83 (d, 1H, -CH=C-), 7.90 (d, 1H, - C=CH-) ¹³C-NMR, (100 MHz, DMSO-d₆)

 $[C_{1}C_{6}Im][HCO_{3}]: \delta 14.15 (-CH_{3}), 22.29 (-CH_{2}-), 25.54 (-CH_{2}-), 29.92 (-CH_{2}-), 30.98 (-CH_{2}-), 36.25 (N-CH_{3}), 49.06 (N-CH_{2}-), 122.69 (-CH=), 123.88 (=CH-), 137.12 (N-CH-N) C_{1}C_{6}Im-CO_{2}: \delta 14.15 (-CH_{3}), 22.31 (-CH_{2}-), 25.71 (-CH_{2}-), 30.61 (-CH_{2}-), 31.07 (-CH_{2}-), 37.03 (N-CH_{3}), 48.91 (N-CH_{2}-), 121.57 (-CH=), 122.81 (=CH-), 141.94 (N-C-N), 154.93 (CO_{2})$

Fig. S9. ¹H NMR spectra of [C₁C₆Im][HCO₃] in DMSO

Fig. S10. ¹³C NMR spectra of [C₁C₆Im][HCO₃] in DMSO

The ¹H and ¹³C NMR spectra of [C₁C₁₂Im][Br]

¹H-NMR, (400 MHz, DMSO-d₆): δ 0.85-0.82 (t, 3H, -CH₃), 1.12 (br, 18H, -C₉H₁₂-), 1.81-1.74 (m, 2H, -CH₂-), 3.88 (s, 3H, N-CH₃), 4.21-4.17 (t, 2H, N-CH₂-), 7.79 (d, 1H, -CH=C-), 7.86 (d, 1H, -C=CH-), 9.35 (s, 1H, N-CH-N)

¹³C-NMR, (100 MHz, DMSO-d₆): δ 14.39 (-CH₃), 22.56 (-CH₂-), 25.97 (-CH₂-), 28.88 (-CH₂-), 29.19 (-CH₂-), 29.33 (- CH₂-), 29.44 (-CH₂-), 29.49 (-CH₂-), 29.51 (-CH₂-), 29.91 (-CH₂-), 31.77 (-CH₂-), 36.24 (N-CH₃), 49.16 (N-CH₂-), 122.72 (-CH=), 124.01 (=CH-), 137.00 (N-CH-N)

Fig. S11. ¹H NMR spectra of $[C_1C_{12}Im][Br]$ in DMSO

Fig. S12. ¹³C NMR spectra of [C₁C₁₂Im][Br] in DMSO

The ¹H and ¹³C NMR spectra of [C₁C₁₂Im][HCO₃]

¹H-NMR, (400 MHz, DMSO-d₆)

[C₁C₁₂Im][HCO₃]: δ 0.85-0.81 (t, 3H, -CH₃), 1.22 (br, 18H, -C₉H₁₈-), 1.81-1.76 (m, 2H, -

CH2-), 3.88 (s, 3H, N-CH3), 4.21-4.17 (t, 2H, N-CH2-), 7.79 (d, 1H, -CH=C-), 7.87 (d, 1H,

-C=CH-), 9.37 (s, 1H, N-CH-N)

C1C12Im-CO2: δ 0.85-0.81 (t, 3H, -CH3), 1.22 (br, 18H, -C₉H₁₈-), 1.81-1.76 (m, 2H, - CH2-), 3.96 (s, 3H, N-CH3), 4.47-4.44 (t, 2H, N-CH2-), 7.65 (d, 1H, -CH=C-), 7.71 (d, 1H, -

C=CH-)

¹³C-NMR, (100 MHz, DMSO-d₆)

[C1C12Im][HCO3]: δ 14.37 (-CH3), 22.57 (-CH2-), 25.98 (-CH2-), 28.90 (-CH2-), 29.21 (-CH2-)

), 29.34 (- CH2-), 29.46 (-CH2-), 29.51 (-CH2-), 29.53 (-CH2-), 29.93 (-CH2-), 31.78 (-

CH₂-), 36.23 (N-CH₃), 49.16 (N-CH₂-), 122.73 (-CH=), 124.01 (=CH-), 137.05 (N-CH-N)

C1C12Im-CO2: δ 14.37 (-CH3), 22.57 (-CH2-), 26.18 (-CH2-), 29.01 (-CH2-), 29.21 (- CH2-), 29.39 (-CH2-), 29.46 (-CH2-), 29.51 (-CH2-), 29.53 (-CH2-), 30.65 (-CH2-), 31.78 (-CH2-), 36.97 (N-CH3), 48.96 (N-CH2-), 121.39 (-CH=), 122.73 (=CH-), 142.31 (N-C- N), 154.65 (CO₂)

Fig. S14. ¹³C NMR spectra of [C₁C₁₂Im][HCO₃] in DMSO

overlapped spectra of [C₁C₁₂Im][Br] (red) and [C₁C₁₂Im][HCO₃] (green) in DMSO

Fig. S16. ¹³C NMR overlapped spectra of $[C_1C_{12}Im][Br]$ (red) and $[C_1C_{12}Im][HCO_3]$

(green) in DMSO

The ¹H and ¹³C NMR spectra of [SMes][Cl]

¹H-NMR, (400 MHz, CDCl₃): δ 2.20 (s, 6H, ArCH₃), 2.29 (s, 12H, ArCH₃), 4.47 (s, 4H, ArH), 6.85 (s, 4H, CH₂-CH₂), 9.44 (s, 1H, N-CH-N) ¹³C-NMR, (100 MHz, CDCl₃): δ 17.02, 20.04, 50.95, 128.97, 129.29, 133.97, 139.36,

159.07

Fig. S17. ¹H NMR spectra of [SMes][Cl] in CDCl₃

Fig. S18. ¹³C NMR spectra of [SMes][Cl] in CDCl₃

The ¹H and ¹³C NMR spectra of SMes-CO₂

¹H-NMR, (400 MHz, CDCl₃): δ 2.17 (s, 6H, ArCH₃), 2.35 (s, 12H, ArCH₃), 4.05 (s, 4H,

ArH), 6.81 (s, 4H, CH₂-CH₂)

¹³C-NMR, (100 MHz, CDCl₃):δ 16.66, 20.00, 48.59, 128.67, 129.70, 135.16, 138.92, 153.46, 164.67 (CO₂)

Fig. S20. ¹³C NMR spectra of SMes-CO₂ in CDCl₃

3. The original GC, GC-MS and crude NMR spectrum of the reaction mixture

Fig. S21. The GC trace of styrene oxidative carboxylation (TBA: Tert-butyl alcohol. TBHP: Tert-butyl hydroperoxide. DTBP: Di-tert-butyl peroxide).

Fig. S22. ¹H NMR spectra of the reaction mixture of styrene oxidative carboxylation.

Fig. S23. ¹³C NMR spectra of the reaction mixture of styrene oxidative carboxylation.

Fig. S24. The GC trace of 4-chlorostyrene oxidative carboxylation.

Fig. S25. The GC trace of 3-chlorostyrene oxidative carboxylation.

Fig. S26. The GC trace of 2-chlorostyrene oxidative carboxylation.

Fig. S27. The GC trace of 4-methylstyrene oxidative carboxylation.

Fig. S28. The GC trace of 3-methylstyrene oxidative carboxylation.

