ELECTRONIC SUPPLEMENTARY INFORMATION

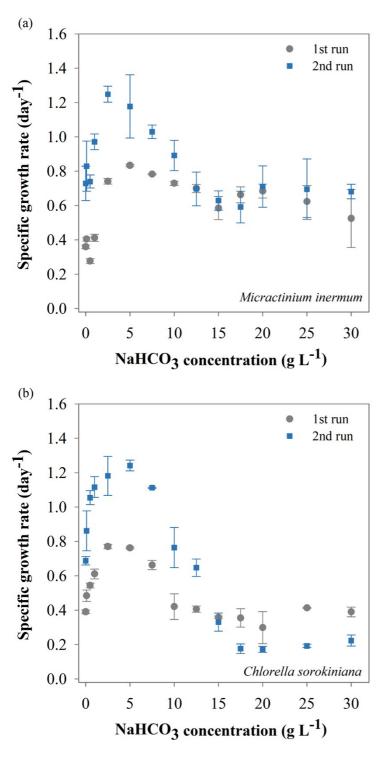
The use of bicarbonate for microalgae cultivation

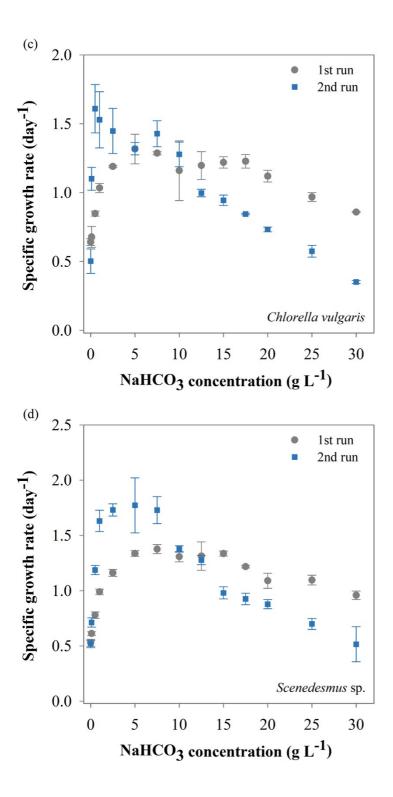
and its carbon footprint analysis

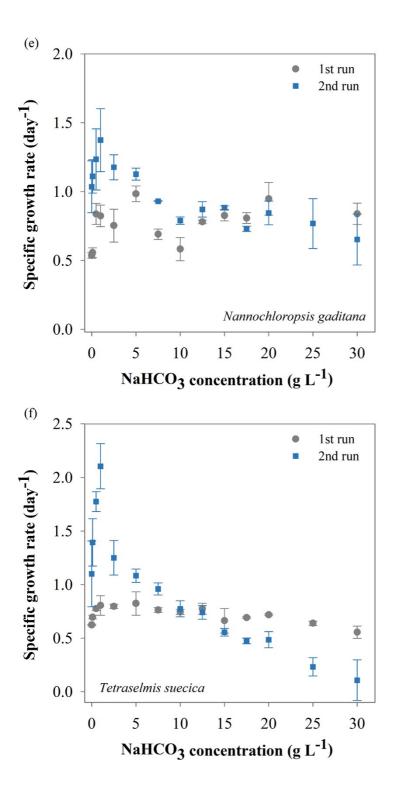
Ga-Yeong Kim^a, Kosan Roh^{b,1}, and Jong-In Han^{a,*}

^a Department of Civil and Environmental Engineering, Korea Advanced Institute of

Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of

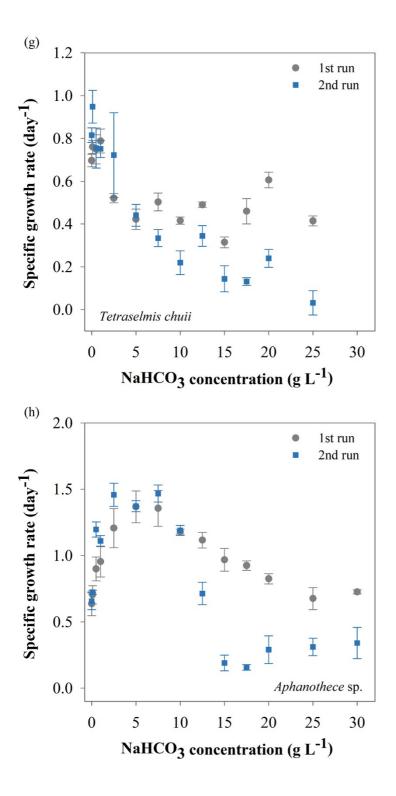
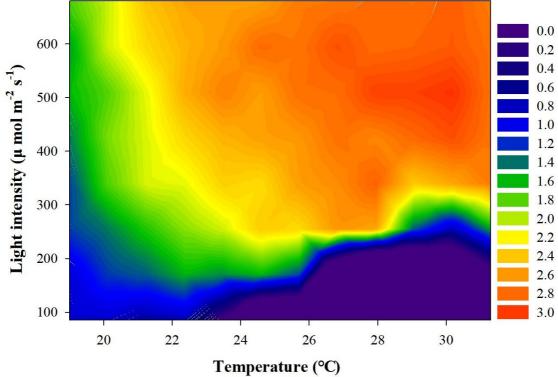

Korea

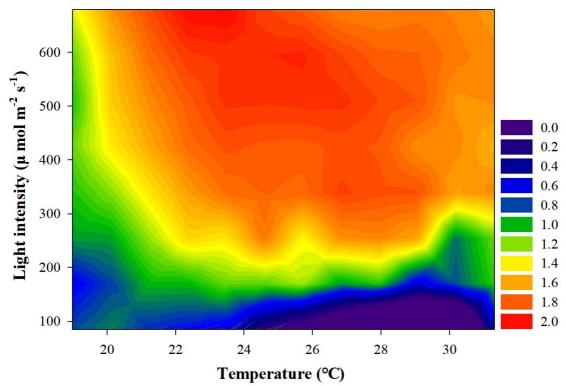

^b Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea


* Corresponding author: Jong-In Han (E-mail address: hanj2@kaist.ac.kr)

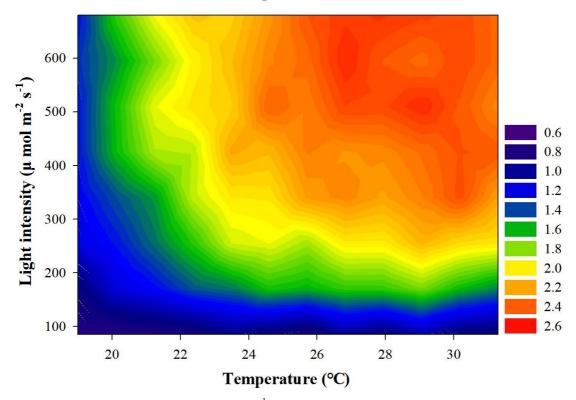
¹ Current address: AVT.SVT, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany

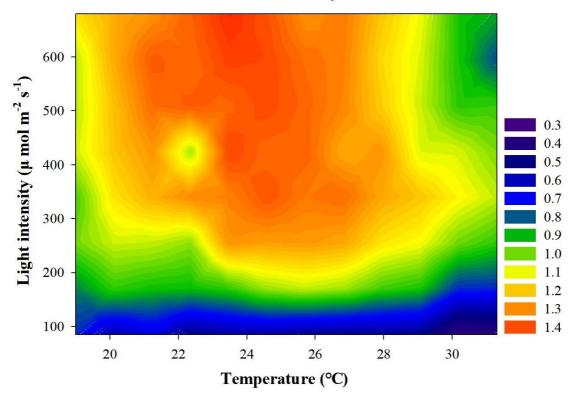
Fig. S1. The specific growth rates of eight algal species with various concentrations of NaHCO₃: (a) *Micractinium inermum*; (b) *Chlorella sorokiniana*; (c) *Chlorella vulgaris*; (d) *Scenedesmus* sp.; (e) *Nannochloropsis gaditana*; (f) *Tetraselmis suecica*; (g) *Tetraselmis chuii*; and (h) *Aphanothece* sp.. All values and error bars represent averages and standard deviations, respectively (n = 3).

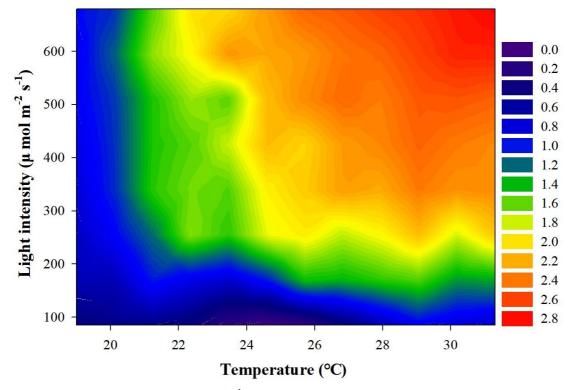




Fig. S2. The optimization of temperature and light intensity (1) with 5% (v/v) of CO₂
supply, and (2) with optimal concentrations of NaHCO₃: (a) *Micractinium inermum*;
(b) *Chlorella sorokiniana*; (c) *Chlorella vulgaris*; (d) *Scenedesmus* sp.; (e) *Nannochloropsis gaditana*; (f) *Tetraselmis suecica*; (g) *Tetraselmis chuii*; and (h) *Aphanothece* sp.. Red color represents high specific growth rate (day⁻¹), and purple for

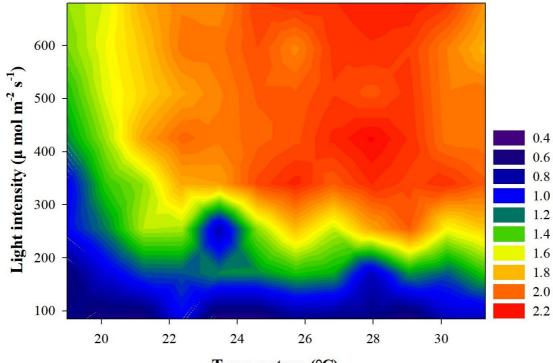
low specific growth rate. Minus specific growth rates were plotted as zero.


(a1) Micractinium inermum with 5% CO₂

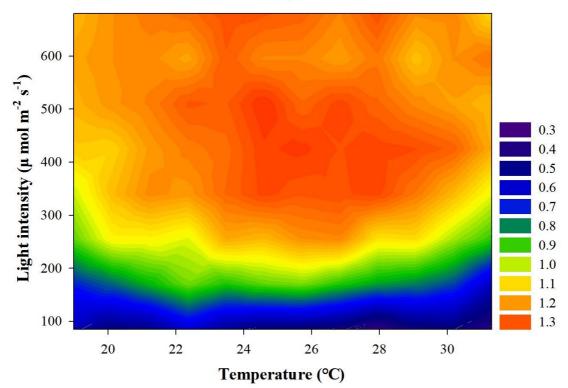

⁽a2) Micractinium inermum with 2.5 g L^{-1} of NaHCO₃


(b1) Chlorella sorokiniana with $5\% \text{ CO}_2$

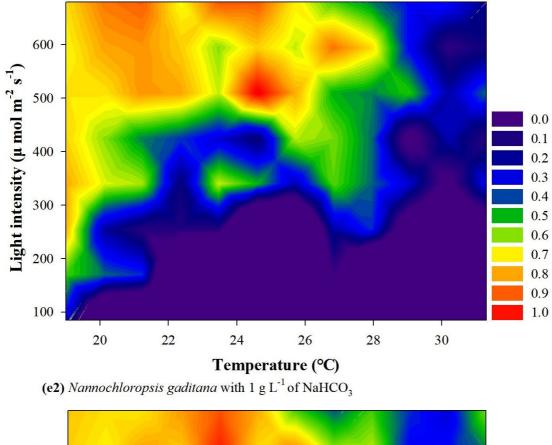

(b2) Chlorella sorokiniana with 5 g L^{-1} of NaHCO₃

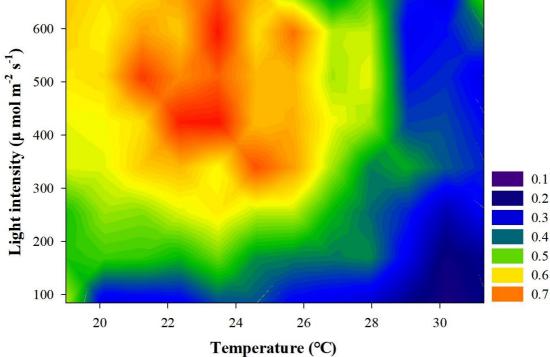

(c1) Chlorella vulgaris with $5\% \text{ CO}_2$

⁽c2) Chlorella vulgaris with 0.5 g L^{-1} of NaHCO₃

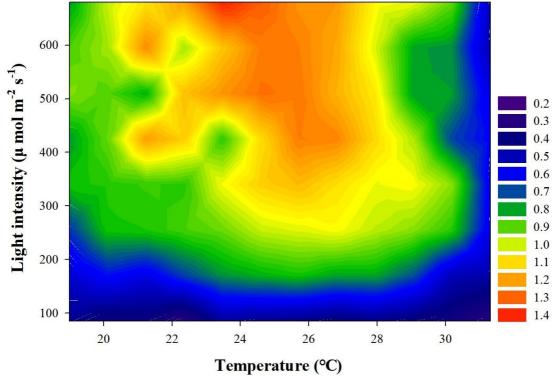


(d1) Scenedesmus sp. with with $5\% \text{ CO}_2$

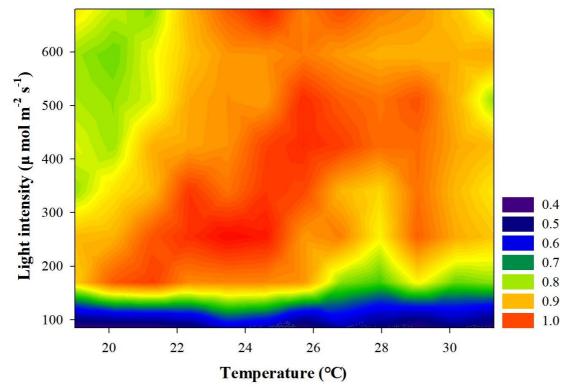


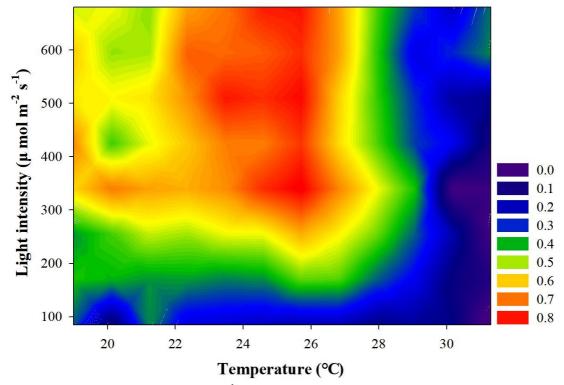

Temperature (°C)

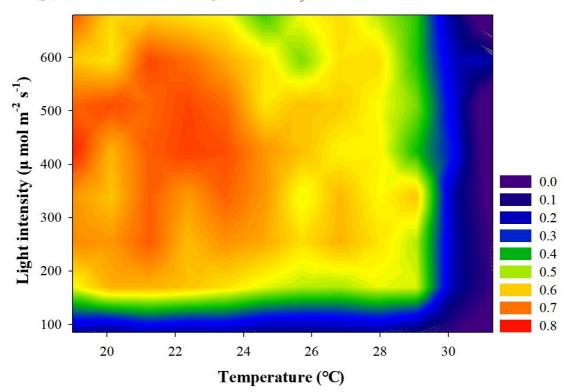
```
(d2) Scenedesmus sp. with 5 g L^{-1} of NaHCO<sub>3</sub>
```

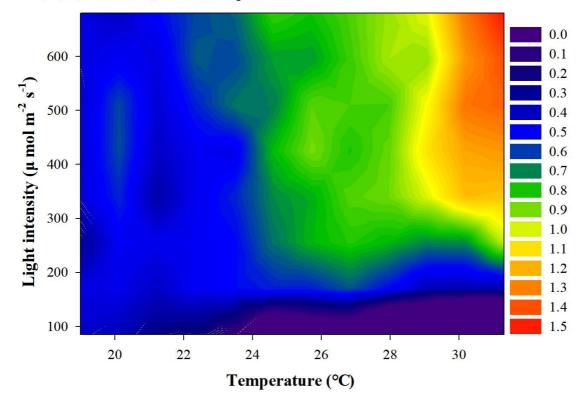


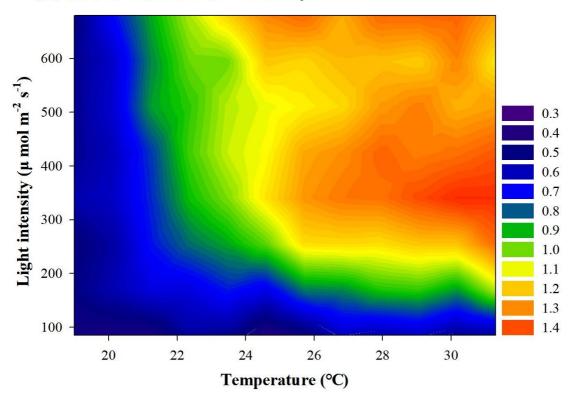
(e1) Nannochloropsis gaditana with 5% CO2




(f1) Tetraselmis suecica with $5\% \text{ CO}_2$


(f2) Tetraselmis suecica with 1 g L^{-1} of NaHCO₃


(g1) Tetraselmis chuii with $5\% \text{ CO}_2$


⁽g2) Tetraselmis chuii with 0.1 g L^{-1} of NaHCO₃

(h1) Aphanothece sp. with 5% CO₂


```
(h2) Aphanothece sp. with 7.5 g L^{-1} of NaHCO<sub>3</sub>
```


Skyonic report based ¹	Power (MW)	ton CO ₂ - eq./yr	Cumulative ton CO ₂ -eq./yr
Input CO ₂			
1. Direct carbon capture		-250,000	-250,000
CO ₂ emissions			
Emissions from process operations			
2. Electrochemical plant	46.58	173,380	-76,620
3. Outgassed CO ₂ 1) 10% of input CO ₂ assumed 2) 20% of input CO ₂ assumed		25,000 50,000	1) -51,620 2) -26,620
 4. HCl used for microalgae cultivation 1) 10% of input CO₂ assumed 2) 20% of input CO₂ assumed 		16,088 14,319	1) -35,532 2) -12,301
Emissions from transportation			
5. Transport of inputs and makeup water		14,055	1) -21,477 2) 1,754
6. Transport of outputs (NaOCl, HCl) and wastewater 1) 10% of input CO ₂ assumed 2) 20% of input CO ₂ assumed		3,671 3,685	1) -17,806 2) 5,439
CO ₂ reduction from replacing conventional process			
7. Power saved from H_2 production	-21.67	-80,666	1) -98,472 2) -75,227
8. Power saved from Cl_2 production	-18.27	-68,026	1) -166,498 2) -143,253

Table S1 Scenario 1: NaHCO3 without transport

Skyonic report based ¹	Power (MW)	ton CO ₂ - eq./yr	Cumulative ton CO ₂ -eq./yr
Input CO ₂			
1. Direct carbon capture		-250,000	-250,000
CO ₂ emissions			
Emissions from process operations			
2. Electrochemical plant	46.58	173,380	-76,620
3. Outgassed CO ₂ 1) 10% of input CO ₂ assumed 2) 20% of input CO ₂ assumed		25,000 50,000	1) -51,620 2) -26,620
 4. HCl used for microalgae cultivation 1) 10% of input CO₂ assumed 2) 20% of input CO₂ assumed 		16,088 14,319	1) -35,532 2) -12,301
Emissions from transportation			
5. Transport of inputs and makeup water		14,055	1) -21,477 2) 1,754
6. Transport of outputs (NaOCl, HCl, NaHCO ₃) and wastewater		4,655	1) -16,822 2) 6,409
CO2 reduction from replacing conventional process			
7. Power saved from H_2 production	-21.67	-80,666	1) -97,488 2) -74,257
8. Power saved from Cl_2 production	-18.27	-68,026	1) -165,514 2) -142,283

Table S2 Scenario 2:NaHCO3 with transport (100 km)

<Scenario 1 and 2>

Scenario 1 and 2 were primarily calculated based on the Skyonic report¹, and then adjusted according to the initial target amounts of CO_2 in functional unit (250,000 ton CO_2/yr).

1. Direct carbon capture:

Target amounts of ton CO_2/yr (250,000 ton CO_2/yr from flue gas emitted by a coal-fired cement kiln).

2. Electrochemical plant:

The amount of energy required for SkyMine[®] process including flue gas conditioning, carbon capture, electrolysis-based chlor-alkali process, H_2/Cl_2 combustion, product drying/storing/loading and so on. (operating days = 350 days)

	ton/yr
nput	
CO ₂	250,000
NaCl	408,417
H ₂ O	681,153
Energy	46.58 MW
Dutput	
NaHCO ₃	489,175
HCl	602,434
NaOCl	172,730

Mass balance of SkyMine[®] process¹

3. Outgassed CO₂:

Carbon utilization efficiencies of a minimum 80% to a maximum 90% were assumed; therefore, the amount of outgassed CO_2 was calculated from a minimum 10% to a maximum 20% of initial targeted amount of CO_2 .

4. HCl used for microalgae cultivation:

0.59 ton HCl required/ton biomass produced²

Among 602,434 ton/yr of HCl produced,

Case1) 10% of input CO₂ outgassed

 \rightarrow 74,385 ton/yr of HCl (10.82% of total byproducts)

Case2) 20% of input CO₂ outgassed

 \rightarrow 66,196 ton/yr of HCl (9.63% of total byproducts)

is used for microalgae cultivation to lower the pH of culture medium.

Therefore,

Case1) (80,666 + 68,026) * 0.1082 = 16,088 ton CO₂-eq./yr Case2) (80,666 + 68,026) * 0.0963 = 14,319 ton CO₂-eq./yr

among indirect CO_2 reductions, which are obtained from replacing conventional H_2 and Cl_2 -production processes, 16,088 and 14,319 ton/yr of CO_2 should be excluded, respectively.

- **5.** Transport of inputs and makeup water: 248 + 9,773 + 3,860 + 174 = 14,055
 - A. Extraction of salt (NaCl) from sea water through solar evaporation:

2.2 kWh power consumed/ton NaCl
408,417 ton NaCl required/yr
Diesel powered pumps and conveyor belts → 248 ton CO₂-eq./yr

B. Transport of salt:

Ship salt by Barge to port: 1,110 km \rightarrow 9,773 ton CO₂-eq./yr Ship by train from port to plant: 588 km, 4,500 tons every 2 weeks \rightarrow 3,860 ton CO₂-eq./yr

C. Makeup water:

681,153 ton water/yr \rightarrow 174 ton CO₂-eq./yr

6. Transport of outputs and wastewater:

Scenario 1 (0 km):

Case1)

489,175 ton NaHCO₃ and 74,385 ton HCl is directly used in the algal pond (0 km), and residual (602,434 – 74,385) ton HCl and 172,730 ton NaOCl is transported to the market 100 km away.

NaOCl + residual HCl + wastewater = 2,638 + 905 + 128 = 3,671

Case2)

489,175 ton NaHCO₃ and 66,196 ton HCl is directly used in the algal pond (0 km), and residual (602,434 – 66,196) ton HCl and 172,730 ton NaOCl is transported to the market 100 km away.

NaOCl + residual HCl + wastewater = 2,638 + 919 + 128 = 3,685

Scenario 2 (100 km):

Case1)

489,175 ton NaHCO₃ and 74,385 ton HCl is transported to the algal pond 100 km away, and residual (602,434 – 74,385) ton HCl and 172,730 ton NaOCl is transported to the market 100 km away.

NaOCl + HCl + NaHCO₃ + wastewater = 2,638 + 1,033 + 856 + 128 = 4,655

Case2)

489,175 ton NaHCO₃ and 66,196 ton HCl is transported to the algal pond 100 km away, and residual (602,434 - 66,196) ton HCl and 172,730 ton NaOCl is transported to the market 100 km away.

NaOCl + HCl + NaHCO₃ + wastewater = 2,638 + 1,033 + 856 + 128 = 4,655

A. NaOCl:

172,730 ton NaOCl produced/yr, via heavy duty diesel truck, 20 tons per excursion, 100 km \rightarrow 2,638 ton CO₂-eq./yr

B. HCl:

Scenario 1:

Case1)

(602,434 – 74,385) ton HCl/yr, via train, 4,500 tons per excursion, 100 km \rightarrow 905 ton CO₂-eq./yr

Case2)

(602,434 – 66,196) ton HCl/yr, via train, 4,500 tons per excursion, 100 km \rightarrow 919 ton CO₂-eq./yr

Scenario 2: 602,434 ton HCl produced/yr, via train, 4,500 tons per excursion, 100 km \rightarrow 1,033 ton CO₂-eq./yr

C. NaHCO₃:

489,175 ton NaHCO₃ produced/yr, via train, 4,500 tons per excursion, 100 km \rightarrow 856 ton CO₂-eq./yr

D. Wastewater: 128 ton CO₂-eq./yr

7. Power saved from H₂ production:

Benefits obtained by comparing to common H₂-producing natural gas reformation process (45% Nat. Gas Efficiency (US Average) basis).

8. Power saved from Cl₂ production:

Benefits obtained by comparing to chlor-alkali industry standard.

In the Skyonic report¹, the amount of power saved from Cl_2 production was assumed as 73.28 MW (272,785 ton CO_2 -eq./yr). This is the average electricity consumption of a chlorine electrolysis plant producing 1.1 ton of caustic and 0.03 ton of H_2 per ton of Cl_2 (molar ratio of 1.95 : 1.06 : 1).³

In this study, for fair calculation, allocation was considered.

73.28 MW *1 / (1.95 + 1.06 + 1) = 18.27 MW

272,785 ton CO₂-eq./yr *1 / (1.95 + 1.06 + 1) = 68,026 ton CO₂-eq./yr

In theory⁴,

3.49 ton NaHCO₃ required for 1 ton algae biomass

90% carbon utilization efficiency \rightarrow 3.88 ton NaHCO₃/ton biomass 80% carbon utilization efficiency \rightarrow 4.36 ton NaHCO₃/ton biomass

		NaHCO ₃	
	Carbon utilization efficiency (%)	80	90
Net CO ₂ emission (ton CO ₂ -eq./yr)	No transport (0 km)	-143,253	-166,498
	Transport (100 km)	-142,283	-165,514
Biomass produced (ton biomass/yr)		112,196	126,076

Scenario 1 (0 km), 10% CO₂ outgassed:

ton biomass/3.88 ton NaHCO₃ \rightarrow 126,076 ton biomass/489,175 ton NaHCO₃

Scenario 1 (0 km), 20% CO₂ outgassed:

ton biomass/4.36 ton NaHCO₃ \rightarrow 112,196 ton biomass/489,175 ton NaHCO₃

Scenario 2 (100 km), 10% CO₂ outgassed:

ton biomass/3.88 ton NaHCO₃ \rightarrow 126,076 ton biomass/489,175 ton NaHCO₃

Scenario 2 (100 km), 20% CO₂ outgassed:

ton biomass/4.36 ton NaHCO₃ \rightarrow 112,196 ton biomass/489,175 ton NaHCO₃

•	•	-
Direct flue gas injection	ton CO ₂ -eq./yr	Cumulative ton CO ₂ - eq./yr
Input CO ₂		
1. Direct carbon capture	-250,000	-250,000
CO ₂ emissions		
Emissions from process operations		
2. Electricity energy required	2,359	-247,641
3. Outgassed CO ₂		
1) 75% of input CO ₂ assumed	187,500	1) -60,141
2) 90% of input CO ₂ assumed	225,000	2) -22,641

Table S3 Scenario 3: direct flue gas injection without transport

Table S4 Scenario 4: direct flue gas injection with transport (100 km)

Direct flue gas injection	ton CO ₂ -eq./yr	Cumulative ton CO ₂ - eq./yr	
Input CO ₂			
1. Direct carbon capture	-250,000	-250,000	
CO ₂ emissions			
Emissions from process operations			
2. Electricity energy required	2,359	-247,641	
3. Outgassed CO ₂ 1) 75% of input CO ₂ assumed 2) 90% of input CO ₂ assumed	187,500 225,000	1) -60,141 2) -22,641	
Emissions from transportation			
4. Compressing CO ₂ to 150 atm	84,450	1) 24,309 2) 61,809	
5. Transport of CO ₂ (100km)	1,750	1) 26,059 2) 63,559	

<Scenario 3 and 4>

1. Direct carbon capture:

Target amounts of CO₂ in functional unit (250,000 ton CO₂/yr)

2. Electricity energy required:

22.2 kWh/ton CO₂ of electricity required.⁵

The source of electricity used in this study was the same as that used in the Skyonic report for the consistency with Scenario 1 and 2 (by a natural gas combined cycle power plant: 2,353 kWh/ton CO₂).

3. Outgassed CO₂:

Carbon utilization efficiencies of a minimum 10% to a maximum 25% were assumed; therefore, the amount of outgassed CO₂ was calculated from a minimum 75% to a maximum 90% of initial targeted amount of CO₂.

4. Compressing CO₂ to 150 atm:

Total mechanical work consumed in compressing CO_2 to 150 atm was assumed as 400.6 MJ/ton CO_2 .⁶

In particular, it was multiplied by 1/0.14, considering that the raw flue gas contains only 14%(v/v) of CO₂.

5. Transport of CO₂ (100km):

The power consumed to transport CO_2 every 100 km was assumed as 8.3 MJ/ton CO_2 .⁶ It was multiplied by 1/0.14 as well.

MEA-extracted pure CO ₂ injection	ton CO ₂ -eq./yr	Cumulative ton CO ₂ - eq./yr
Input CO ₂		
1. Direct carbon capture	-250,000	-250,000
CO ₂ emissions		
Emissions from process operations		
2. Steam energy required	76,213	-173,787
3. Electricity energy required	3,469	-170,318
 4. Outgassed CO₂ 1) 75% of input CO₂ assumed 2) 90% of input CO₂ assumed 	187,500 225,000	1) 17,182 2) 54,682

Table S5 Scenario 5: MEA-extracted pure CO_2 injection without transport

Table S6 Scenario 6:MEA-extracted pure CO₂ injection with transport (100 km)

MEA-extracted pure CO ₂ injection	ton CO ₂ - eq./yr	Cumulative ton CO ₂ - eq./yr
Input CO ₂		
1. Direct carbon capture	-250,000	-250,000
CO ₂ emissions		
Emissions from process operations		
2. Steam energy required	76,213	-173,787
3. Electricity energy required	3,469	-170,318
 4. Outgassed CO₂ 1) 75% of input CO₂ assumed 2) 90% of input CO₂ assumed Emissions from transportation 	187,500 225,000	1) 17,182 2) 54,682
		1) 20 005
5. Compressing CO ₂ to 150 atm	11,823	1) 29,005 2) 66,505
6. Transport of CO ₂ (100km)	245	1) 29,250 2) 66,750

<Scenario 5 and 6>

1. Direct carbon capture:

Target amounts of CO₂ in functional unit (250,000 ton CO₂/yr)

2. Steam energy required:

2,010 kg/ton CO₂ of steam is required for MEA extraction, and the energy required to transform water to steam was evaluated as 2.6 MJ/kg steam.⁵ Natural gas was assumed to be burned for the steam generation (0.21 kg CO_2/kWh natural gas).⁷

3. Electricity energy required:

32.65 kWh/ton CO₂ of electricity is required.⁵

The source of electricity used in this study was the same as that used in the Skyonic report for the consistency with Scenario 1 and 2 (by a natural gas combined cycle power plant: 2,353 kWh/ton CO₂).

4. Outgassed CO₂:

Carbon utilization efficiencies of a minimum 10% to a maximum 25% were assumed; therefore, the amount of outgassed CO_2 was calculated from a minimum 75% to a maximum 90% of initial targeted amount of CO_2 .

5. Compressing CO₂ to 150 atm:

Total mechanical work consumed in compressing CO_2 to 150 atm was assumed as 400.6 MJ/ton CO_2 .⁶

6. Transport of CO₂ (100km):

The power consumed to transport CO₂ every 100 km was assumed as 8.3 MJ/ton CO₂.⁶

In theory⁴,

1.83 ton CO₂ required for 1 ton algae biomass

10% carbon utilization efficiency \rightarrow 18.3 ton CO₂/ton biomass

25% carbon utilization efficiency \rightarrow 7.3 ton CO₂/ton biomass

Scenario 3 (0 km), 75% CO₂ outgassed:

ton biomass/7.3 ton $CO_2 \rightarrow 34,247$ ton biomass/250,000 ton CO_2

Scenario 3 (0 km), 90% CO₂ outgassed:

ton biomass/18.3 ton $CO_2 \rightarrow 13,661$ ton biomass/250,000 ton CO_2

Scenario 4 (100 km), 75% CO₂ outgassed:

ton biomass/7.3 ton $CO_2 \rightarrow 34,247$ ton biomass/250,000 ton CO_2

Scenario 4 (100 km), 90% CO₂ outgassed:

ton biomass/18.3 ton $CO_2 \rightarrow 13,661$ ton biomass/250,000 ton CO_2

Scenario 5 (0 km), 75% CO₂ outgassed:

ton biomass/7.3 ton $CO_2 \rightarrow 34,247$ ton biomass/250,000 ton CO_2

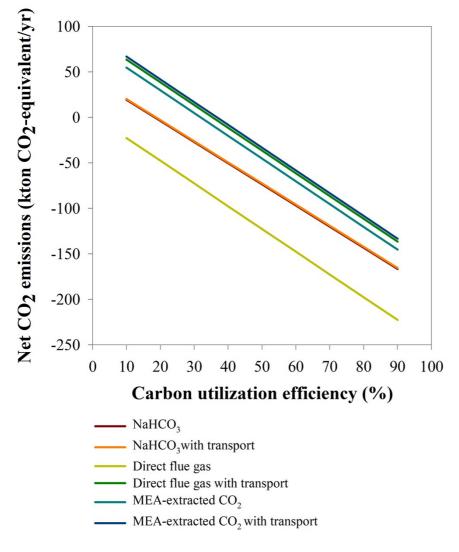
Scenario 5 (0 km), 90% CO2 outgassed:

ton biomass/18.3 ton $CO_2 \rightarrow 13,661$ ton biomass/250,000 ton CO_2

Scenario 6 (100 km), 75% CO₂ outgassed:

ton biomass/7.3 ton $CO_2 \rightarrow 34,247$ ton biomass/250,000 ton CO_2

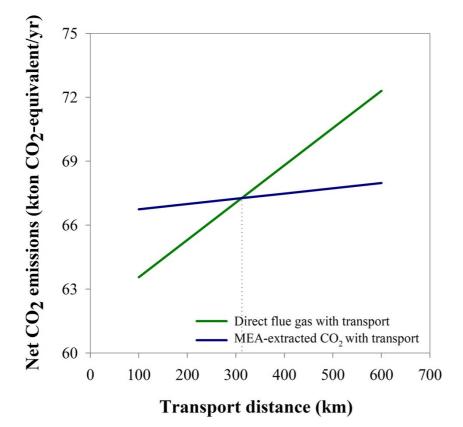
Scenario 6 (100 km), 90% CO₂ outgassed:


ton biomass/18.3 ton $CO_2 \rightarrow 13,661$ ton biomass/250,000 ton CO_2

Carbon utilization efficiency (%)	Scenario 1 NaHCO ₃ 0 km	Scenario 2 NaHCO ₃ 100 km	Scenario 3 Direct flue gas 0 km	Scenario 4 Direct flue gas 100 km	Scenario 5 Pure CO ₂ 0 km	Scenario 6 Pure CO ₂ 100 km
10	19,312	20,182	-22,641	63,559	54,682	66,750
20	-3,903	-3,019	-47,641	38,559	29,682	41,750
30	-27,133	-26,234	-72,641	13,559	4,682	16,750
40	-50,363	-49,450	-97,641	-11,441	-20,318	-8,250
50	-73,578	-72,651	-122,641	-36,441	-45,318	-33,250
60	-96,807	-95,866	-147,641	-61,441	-70,318	-58,250
70	-120,037	-119,082	-172,641	-86,441	-95,318	-83,250
80	-143,253	-142,283	-197,641	-111,441	-120,318	-108,250
90	-166,498	-165,514	-222,641	-136,441	-145,318	-133,250

Net CO₂ emissions (ton CO₂-eq./yr)

Table S7 Net CO₂ emissions according to various carbon utilization efficiency


Fig. S3. Net CO_2 emissions according to various carbon utilization efficiency.

	* 10% carbon utilization efficiency assur Net CO ₂ emissions (ton CO ₂ -eq./yr)		
Transport distance (km)	Scenario 4 Direct flue gas	Scenario 6 Pure CO ₂	
100	63,559	66,750	
200	65,309	66,995	
300	67,059	67,240	
400	68,809	67,485	
500	70,559	67,730	
600	72,309	67,975	

Table S8 Net CO₂ emissions according to the transport distance

Fig. S4. Net CO₂ emissions according to the transport distance.

References

- 1 J. Jones, C. Barton, M. Clayton and A. Yablonsky, *SkyMine*® *Carbon mineralization pilot project final phase 1 topical report*, 2011.
- 2 G.-Y. Kim, J. Heo, H.-S. Kim and J.-I. Han, *Bioresour. Technol.*, 2017, 237, 72–77.
- 3 Euro Chlor, *The European Chlor-Alkali industry : an electricity intensive sector exposed to carbon leakage*, 2010.
- 4 R. Slade and A. Bauen, *Biomass and Bioenergy*, 2013, **53**, 29–38.
- 5 K. L. Kadam, *Energy*, 2002, **27**, 905–922.
- Z. X. Zhang, G. X. Wang, P. Massarotto and V. Rudolph, *Energy Convers. Manag.*, 2006, 47, 702–715.
- 7 City of Winnipeg, *Emission factors in kg CO2-equivalent per unit*, 2011.