Nickel-catalyzed intelligent reductive transformation of aldehyde group with hydrogen

Xinli Tong^{a, *}, Pengfei Guo^a, Shengyun Liao^{a, *}, Song Xue^a, Haigang Zhang^a

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China; Tel:+86-22-60214259; E-mail: tongxinli@tju.edu.cn; tongxli@sohu.com (X. T.) or mengyunliao@sina.com (S. L.).

Table of Content

Crystallographic data and structure refinement summary for 2D Ni-based MOF	S1
The PXRD patterns of the as-synthesized MOFs and the derived catalysts	S1
XPS analysis for the fresh Ni-MFC-500	S2
XPS analysis for the used Ni-MFC-700	S2
Element mapping from HRSEM images of fresh Ni-MFC-700	S3
Element mapping from HRSEM images of used Ni-MFC-700	S4
Element mapping from HRSEM images of fresh Ni-MFC-500	S5
Element mapping from HRSEM images of used Ni-MFC-500	S 6
FESEM images of the as-obtained Ni/activated carbon catalyst at different magnification	S6
Textural parameters for the derived Ni-MFC catalysts	S7
Nitrogen adsorption-desorption isotherm of the fresh Ni-MFC catalysts	S7
Nitrogen adsorption-desorption isotherm of the fresh and used Ni-MFC-700	S7
Nitrogen adsorption-desorption isotherm of the fresh and used Ni-MFC-500	S 8
NH ₃ -TPD profiles of the fresh Ni-MFC catalysts	S 8
NH ₃ -TPD profiles of the fresh and used Ni-MFC-700 catalysts	89
NH ₃ -TPD profiles of the fresh and used Ni-MFC-500 catalysts	89
The Ni content of the as-obtained catalysts	S10
Influence of reaction temperature on the products distribution	S10
Influence of reaction time on the products distribution	S11
The recyclability of Ni-MFC-700 and NI-MFC -500 catalyst	S11
¹ HNMR spectrum of compound 2	S12
Hydrogenolysis of other lignin models using Ni-MFC-700 as catalyst	S13
¹ HNMR spectrum of the products of vanillin hydrogenolysis	S14
¹ HNMR spectrum of the products of 4-hydroxybenzaldehyde hydrogenolysis	S14
¹ HNMR spectrum the products of 3,5-dimethoxy-4-hydroxybenzaldehyde hydrogenolysis	S15

GC analysis for the products of vanillin hydrogenolysis in methanol	S16-S19
GC-MS analysis for the products of vanillin hydrogenolysis in methanol	S16-S19
GC analysis for the products of 3,4,5-trimethoxybenzaldehyde hydrogenolysis in methanol	S20
GC-MS analysis for the products of 3,4,5-trimethoxybenzaldehyde hydrogenolysis in methanol	S21
GC analysis for the products of 4-methoxybenzaldehyde hydrogenolysis in methanol	S22
GC-MS analysis for the products of 4-methoxybenzaldehyde hydrogenolysis in methanol	S23
GC analysis for the products of p-hydroxybenzaldehyde hydrogenolysis in methanol	S24
GC-MS analysis for the products of p-hydroxybenzaldehyde hydrogenolysis in methanol	S25
GC analysis for the products of 3-chloro-4-hydroxybenzaldehyde hydrogenolysis in methanol	S26
GC-MS analysis for the products of 3-chloro-4-hydroxybenzaldehyde hydrogenolysis in methanol	S27
GC analysis for the products of 3,5-dimethoxy-4-hydroxybenzaldehyde hydrogenolysis in methanol	S28
GC-MS analysis for the products of 3,5-dimethoxy-4-hydroxybenzaldehyde hydrogenolysis in methanol	S29
GC analysis for the products of 3-hydroxy-4-methoxybenzaldehyde hydrogenolysis in methanol	S30
GC-MS analysis for the products of 3-hydroxy-4-methoxybenzaldehyde hydrogenolysis in methanol	S31

Identification code	[Ni(tia)(H₂O)₂]∞ℤ		
Empirical formula	$C_{40}H_{36}N_{12}Ni_4O2_4$		
Formula weight	1303.57		
Temperature/K	289.15		
Crystal system	monoclinic		
Space group	P21/c		
a/Å, b/Å, c/Å	10.4214(18), 16.803(3), 7.336(2)		
α/°, β/°, γ/°	90, 96.12(2), 90		
Volume/Å ³	1277.3(5)		
Z	1		
ρ calcg/cm ³	1.6945		
μ/mm ⁻¹	1.548		
F(000)	665.8		
Radiation	ΜοΚα (λ = 0.71073)		
2θ range for data collection/°	4.62 to 65.92		
Reflections collected	6313		
Independent reflections	4032 [R _{int} = 0.0804, R _{sigma} = 0.1710]		
Data/restraints/parameters	4032/0/183		
Goodness-of-fit on F ²	0.986		
Final R indexes [I>=2σ (I)]	<i>R1</i> = 0.1245, <i>wR2</i> = 0.2924		
Final R indexes [all data]	<i>R1</i> = 0.2218, <i>wR2</i> = 0.3781		
Largest diff. peak/hole / e Å ⁻³	5.14/-2.45		

Table S1 Crystallographic data and structure refinement summary for 2D Ni-based MOF

Fig. S1 The PXRD patterns of the as-synthesized MOFs and the derived Ni-MFC catalysts

Fig. S2. XPS analysis for the fresh Ni-MFC-500: (a) Ni2p3/2; (b) O1s; (c) N1s; (d) C1s

Fig. S3. XPS analysis for the used Ni-MFC-700: (a) Ni2p3/2; (b) O1s; (c) N1s; (d) C1s

Fig. S4 Element mapping from HRSEM images of fresh Ni-MFC-700: (a) Ni; (b) C; (c) N; (d) O; (e) SEM image

Fig. S5 Element mapping from HRSEM images of used Ni-MFC-700: (a) Ni; (b) C; (c) N; (d) O; (e) SEM Image

Fig. S6 Element mapping from HRSEM images of fresh Ni-MFC-500: (a) Ni; (b) C; (c) N; (d) O; (e) SEM image

Fig. S7 Element mapping from HRSEM images of used Ni-MFC-500: (a) Ni; (b) C; (c) N; (d) O; (e) SEM image

Fig. S8 FESEM images of the as-obtained Ni/activated carbon catalyst at different magnification

Catalysts	BET (m ² g ⁻¹)	Pore size(Å)	Pore volume(cm ³ ·g ⁻¹)
Ni-MFC-500	119.4	46.1	0.14
Ni-MFC-700	103.6	56.5	0.15
Ni-MFC-800	103.10	50.5	0.13
Ni-MFC-500 ^a	184.1	27.6	0.13
Ni-MFC-700 ^a	117.5	52.4	0.15

Table S2 Textural parameters for the derived Ni-MFC catalysts

^{*a*} The catalysts were recycled for 5 times.

Fig. S9 Nitrogen adsorption-desorption isotherm of the fresh Ni-MFC catalysts.

Fig. S10 Nitrogen adsorption-desorption isotherm of the fresh and used catalysts.

Fig. S11 Nitrogen adsorption-desorption isotherm of the fresh and used catalysts.

Fig. S12 NH₃-TPD profiles of the fresh Ni-MFC catalysts.

Fig. S13 NH₃-TPD profiles of the fresh and used Ni-MFC-700 catalysts.

Fig. S14 NH₃-TPD profiles of the fresh and used Ni-MFC-500 catalysts.

		,	
Entry	Catalyst	Calculation (mol/g)	Found (mol/g) ^a
1	Ni-MFC	0.0031 ^b	0.0029
2	Ni-MFC-300	0.0034 ^c	0.0032
3	Ni-MFC-350	0.0040 ^c	0.0039
4	Ni-MFC-400	0.0044 ^c	0.0045
5	Ni-MFC-500	0.0046 ^c	0.0043
6	Ni-MFC-600	0.0047 ^c	0.0048
7	Ni-MFC-700	0.0049 ^c	0.0044
8	Ni-MFC-800	0.0049 ^c	0.0049
9	Ni/Activated Carbone	0.0013 ^d	0.0014
10	Ni/γ-Al ₂ O ₃ -700	0.0013 ^d	0.0012
11	Ni/nano graphite-700	0.0013 ^d	0.0015
12	Ni/TiO ₂ -700	0.0013 ^d	0.0012
13	Ni/ZrO ₂ -700	0.0013 ^d	0.0013
14	Ni/nano MgO-700	0.0013 ^d	0.0012

Table S3 The Ni content of the as-obtained catalysts

^a The Ni content was determined by inductively coupled plasma spectroscopy (ICP).

^b The theoretical Ni content was calculated based on the formula of Ni-MFC (C₄₀H₃₆N₁₂Ni₄O₂₄: 1303.57).

$$\sum_{c} Ni \ content \left(\frac{mol}{g} \right) = \frac{\frac{m_{(Ni-MFC)}}{M_{(Ni-MFC)}}}{m_{(Ni-MFC-A)}}$$
(A = 300-700)
$$m_{Ni(NO_3).6H_2O}$$

$$Ni \ content {mol/g} = \frac{\overline{M_{Ni(NO_3).6H_2O}}}{\overline{M_{Ni(NO_3).6H_2O}}} \times M_{Ni} + m_{Support}$$

Fig. S15 Influence of reaction temperature on the products distribution (Reaction conditions: 0.1 g vanillin, 0.025 g catalyst, in 15 mL methanol, under 2 MPa of H_2 , for 4 h).

Fig. S16 Influence of reaction time on the products distribution (Reaction conditions: 0.1 g vanillin, 0.025 g catalyst, in 15 mL methanol, under 2 MPa of H_2 , at 200 °C).

Fig. S17 The recyclability of Ni-MFC-700 and Ni-MFC-500 catalysts (Reaction conditions: 0.1 g vanillin,

0.025 g catalyst, in 15 mL methanol, under 2 MPa of $\rm H_2,$ at 200 °C for 10 h).

Fig. S18 ¹HNMR spectrum (400 MHz, 300 K) of compound 2 in DMSO-d₆

	Table 34. Hydroger	iorysis or other	lightin models	using M-MIC-	ou as catalys	ι
Substrates	Conv. (%) ^b	%) ^b Product distribution (%) ^b				
CHO					HO	Others
(5)	100	6.1	он 82.2	он О	о́н О	11.7
		OH CI	CI OH		OH OH	Others
(0)	100	10.3	84.8	0	0	4.9
		OH OH			HO O O O O H	Others
(7)	100	51.5	48.5	0	0	0
					HO	Others
(0)	97.0	0	7.5	24.9	67.6	0
сно он (9)		ОН	ОН		HO O O HO	Others
	100	4.0	2.9	0	93.1	0
					HO O O	Others
(10)	98.4	1.1	2.5	0	90.4	6.0
CHO OH Vanillin	100					Others
Variiliin	100	20.4	12.5	0.4	U	0.7

 Table S4. Hydrogenolysis of other lignin models using Ni-MFC-700 as catalyst ^a

^{*a*} Reaction conditions: 0.1 g substrate, 0.025 g catalyst, in 15 mL methanol, at160 °C for 4 h. ^{*b*} The results were obtained by GC analysis with the internal standard technique, 1,3-dichlorobenzene as internal standard.

Fig. S19¹HNMR spectrum (400 MHz, 300 K) of the products of vanillin hydrogenolysis in DMSO-d₆ (After reaction finished, the solvents were evaporated).

Fig. S20 ¹HNMR spectrum (400 MHz, 300 K) of the products of 4-hydroxybenzaldehyde (5) hydrogenolysis in CDCl₃ (After reaction finished, the solvents were evaporated).

Fig. S21 ¹HNMR spectrum (400 MHz, 300 K) of the 3,5-dimethoxy-4-hydroxybenzaldehyde (7) hydrogenolysis in DMSO-d₆ (After reaction finished, the solvents were evaporated).

Fig. S22 GC analysis for products of vanillin hydrogenolysis in methanol with Ni-MFC-700 catalyst [a. Reaction condition: vanillin (0.1 g), methanol (15 mL), under 2 MPa of H₂, at 160 °C for 4 h; b. Reaction condition: vanillin (0.1 g), methanol (15 mL), under 2 MPa of H₂, at 200 °C for10 h]

Fig. S23 GC-MS analysis for products of vanillin hydrogenolysis in methanol with Ni-MFC-700 catalyst: [a. GC spectrum of the reaction mixtures; b. MS analysis for **1**; c. MS analysis for **2**; The GC-MS spectrum of **3** was shown in **Fig. S23(e**)].

Fig. S24 GC analysis for the products of vanillin hydrogenolysis in methanol with (a) Ni-MFC-350 and (b) Ni-MFC-500 catalyst (Reaction condition: vanillin (0.1g), methanol (15 mL), under 2 MPa of H_2 , at 160 °C for 4 h).

Fig. S25 GC-MS analysis for products of vanillin hydrogenolysis in methanol with Ni-MFC-350 catalyst [a. GC spectrum of the reaction mixtures ; b. MS analysis for 1 ; c. MS analysis for 2 ; d. MS analysis for vanillin; and (e) MS analysis for 3 during reaction.

Fig. S26 GC analysis for products of 3, 4, 5-trimethoxybenzaldehyde hydrogenation with Ni-MFC-700 [a. Reaction condition: 0.1 g substrate, methanol (15 mL), 2 MPa of H_2 , at 160 °C for 4 h; b. Reaction condition: 0.1 g substrate, methanol (15 mL), 2 MPa of H_2 , at 200 °C for 10 h]

Fig. S27 GC-MS analysis for products of 3,4,5-trimethoxybenzaldehyde hydrogenation with Ni-MFC-700 [a. GC spectrum; b. MS analysis for 1,2,3-trimethoxy-5- methylbenzene; c. MS for 1,2,3-trimethoxy-5- (methoxymethyl)benzene; d. MS for (3,4,5-trimethoxyphenyl)methanol]

Fig. S28 GC analysis for products of 4-methoxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. Reaction condition: 0.1 g substrate, methanol (15 mL), under 2 MPa of H₂, at 160 °C for 4 h; b. Reaction condition: 0.1 g substrate, methanol (15 mL), under 2 MPa of H₂, at 200 °C for 10 h]

Fig. S29 GC-MS analysis the hydrogention of 4-methoxybenzaldehyde with Ni-MFC-700 [a. GC spectrum; b. MS for 1-methoxy-4-(methoxymethyl)benzene; c. MS for 4-methoxy benzaldehyde; d.MS for (4-methoxyphenyl)methanol;e.MS for 1-(dimethoxymethyl)-4-methoxybenzene]

Fig. S30 GC analysis for products of p-hydroxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. Reaction condition: 0.1 g substrate, methanol (15 mL), under 2 MPa of H_2 , at 160 °C for 4 h; b. Reaction condition: 0.1 g substrate, methanol (15 mL), under 2 MPa of H_2 , at 200 °C for 10 h]

Fig. S31 GC-MS analysis for products of p-hydroxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. GC spectrum of the reaction mixtures; b. MS analysis for p-cresol; c. MS analysis for 4- (methoxymethyl)phenol]

Fig. S32 GC analysis for products of 3-chloro-4-hydroxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. Reaction condition: 0.1 g substrate, methanol (15 mL), 2 MPa of H_2 , at 160 °C for 4 h; b. Reaction condition: 0.1 g substrate, methanol (15 mL), 2 MPa of H_2 , at 200 °C for 10 h]

Fig. S33. GC-MS analysis for products of 3-chloro-4-hydroxybenzaldehyde hydrogenolysis with Ni-MFC-700 catalyst [a. GC spectrum of the reaction mixtures; b. MS analysis for 2-chloro-4-methylphenol; c. MS analysis for 2-chloro-4-(methoxymethyl)phenol.]

Fig. S34. GC analysis for products of 3,5-dimethoxy-4-hydroxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. Reaction condition: 0.1 g substrate, methanol (15 mL), 2 MPa of H_2 at 160 °C for 4 h; b. Reaction condition: 0.1 g substrate, methanol (15 mL), under 2 MPa of H_2 at 200 °C for 10 h]

Fig. S35. GC-MS analysis for products of 3,5-dimethoxy-4-hydroxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. GC spectrum of the reaction mixtures; b. MS analysis for 2,6-dimethoxy-4-methylphenol; c. MS analysis for 2,6-dimethoxy-4-(methoxymethyl)phenol]

Fig. S36. GC analysis for products of 3-hydroxy-4-methoxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. Reaction condition: 0.1 g substrate, methanol (15 mL), 2 MPa of H₂, at 160 °C for 4 h; b. Reaction condition: 0.1 g substrate, methanol (15 mL), 2 MPa of H₂, at 200 °C for 10 h]

Fig. S37. GC-MS analysis for products of 3-hydroxy-4-methoxybenzaldehyde hydrogenolysis with Ni-MFC-700 [a. GC spectrum; b. MS analysis for 2-methoxy-5-methylphenol; c. MS analysis for 2-methoxy-5-(methoxymethyl)phenol; d. MS analysis for 5-(hydroxymethyl)-2-methoxyphenol].