Electronic Supporting Information

Selective hydrogenation of furfural on intermetallic compounds with

outstanding catalytic performance

Yusen Yang,^{‡a} Lifang Chen,^{‡a} Yudi Chen,^b Wei Liu,^a Haisong Feng,^a Bin Wang,^c Xin Zhang,^{*a} Min

Wei*a

^a State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for

Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.

R. China

^b Beijing Center for Physical & Chemical Analysis, Beijing 100089, P. R. China

^c Beijing Research Institute of Chemical Industry, Sinopec Group, Beijing 100013, P. R. China

Author Information

‡ These authors contribute equally to this work.

* Corresponding authors. Tel: +86-10-64412131; Fax: +86-10-64425385.

E-mail addresses: zhangxin@mail.buct.edu.cn (X. Zhang); weimin@mail.buct.edu.cn (M. Wei).

CCA functional	Lat	tice constar	nt/Å	Values deviation
GGA luncuonal	a	b	c	volume deviation
PBE	4.29	4.29	5.29	0.07%
PW91	4.29	4.29	5.30	0.10%
PBEsol	4.23	4.23	5.21	0.20%
PBE-D3	4.25	4.25	5.24	0.01%
Expt.[1]	4.15	4.15	5.25	-

Table S1 Lattice parameters (Å) of bulk Ni₃Sn₂ from PBE, PW91, PBEsol, and PBE-D3 functionals

Fig. S1 Reflex powder diffraction pattern of Ni₃Sn₂ crystalloid simulated by computer.

Fig. S2 Adsorption energies of furfural on the surface of $Ni_3Sn_2(101)$ with various crystal size.

Fig. S3 Optimized adsorption structures and adsorption energies of cis-, trans-furfural on Ni₃Sn₂(101).

Fig. S4 SEM images of (A1) the as-synthesized Ni₂Al-LDHs precursor and the Sn(OH)₄/Ni₂Al-LDHs mixtures with Sn/Ni molar ratio of (A2) 1/3, (A3) 2/3, (A4) 4/3, respectively. EDS analysis of (B1) the as-synthesized Ni₂Al-LDHs precursor and the Sn(OH)₄/Ni₂Al-LDHs mixtures with total Sn/Ni molar ratio of (B2) 1/3, (B3) 2/3, (B4) 4/3, respectively.

Fig. S5 H₂-TPR profiles for (a) the as-synthesized Ni₂Al-LDHs precursor, the Sn(OH)₄/Ni₂Al-LDHs mixtures with total Sn/Ni molar ratio of (b) 1/3, (c) 2/3, (d) 4/3, and (e) Sn(OH)₄, respectively.

Sample	Atom	Charge
Sn	Sn	0.00
Ni	Ni	0.00
	Sn ^a	+0.51
NisSn	Ni1 ^b	-0.18
113311	Ni2 ^b	-0.16
	Ni3 ^b	-0.17
	Sn1 ^a	+0.49
	AtomSnNiSnaNi1bNi2bNi3bSn1aSn2aNi1bNi2bNi3bSn1aSn2aSn1aSn2aSn3aSn4aNi1bNi2bNi3b	+0.49
Ni ₃ Sn ₂	Ni1 ^b	-0.09
	Ni2 ^b	-0.09
	Ni3 ^b	-0.80
	Sn1 ^a	+0.26
	Sn2 ^a	+0.30
	$\begin{array}{ c c c c c } Sample & Atom & C \\ \hline Sn & Sn & 0 \\ \hline Ni & Ni & Ni & 0 \\ \hline Ni & Ni & Ni & 0 \\ \hline Ni_3Sn_1 & Sn^a & + \\ Ni_3Sn_1 & Ni_2^b & - \\ \hline Ni_3Sn_2 & Ni_1^b & - \\ \hline Ni_2^b & - \\ \hline Ni_2^b & - \\ \hline Ni_3^b & - \\ \hline Sn1^a & + \\ Sn2^a & + \\ Sn2^a & + \\ Sn3^a & + \\ Sn3^a & + \\ \hline Sn3^a & + \\ Sn3^a & + \\ \hline Sn3^a $	+0.33
Ni ₃ Sn ₄		+0.34
		-0.44
	Ni2 ^b	-0.40
	Ni3 ^b	-0.39

Table S2 Bader charges analysis of pristine Ni, Ni₃Sn₁, Ni₃Sn₂ and Ni₃Sn₄

^a Different Sn atoms in Ni-Sn IMCs.

^b Different Ni atoms in Ni-Sn IMCs.

Sample	Shell	R (Å)	R(Å)	CN	CN	$\Delta \sigma^2(\text{\AA})^{e}$
		-CF ^a	-DFT ^b	-CF ^c	-DFT ^d	
Ni	Ni–Ni	2.482	2.457	11	11	0.0061
	Ni–Ni	2.585	2.565	5	5	0.0149
113511	Ni–Sn	2.630	2.617	2	2	0.0056
	Ni–Ni	2.622	2.645	3	3	0.0124
N13Sn2	Ni–Sn	2.506	2.568	5	5	0.0173
), C	Ni–Ni	2.661	2.703	1	1	0.0060
1 N 13 SN 4	Ni–Sn	2.613	2.632	7	7	0.0080

Table S3 Curve-fitting and DFT calculation results of Ni K-edge EXAFS spectra of pristine Ni, Ni₃Sn₁, Ni₃Sn₂ and Ni₃Sn₄

^a Distance between absorber and backscatter atom, determined by curve fitting.

^b Distance between absorber and backscatter atom, determined by DFT calculation.

^c Coordination number, determined by curve fitting.

^d Coordination number, determined by DFT calculation.

^e Change in the Debye-Waller factor value relative to the reference sample.

Fig. S6 *In situ* Fourier-transformed infrared spectra of CO adsorption over (a) Ni, (b) Ni₃Sn₁, (c) Ni₃Sn₂, and (d) Ni₃Sn₄, respectively.

Fig. S7 Reaction rate for furfural hydrogenation over (a) Ni, (b) Ni₃Sn₁, (c) Ni₃Sn₂, and (d) Ni₃Sn₄, respectively. Reaction rate is calculated on the basis of tangent slope of the conversion-reaction time plot within 20–40% conversion of furfural.

Fig. S8 (A) Projected density of states of Ni-3d state in: (a) Ni, (b) Ni₃Sn₁, (c) Ni₃Sn₂, (d) Ni₃Sn₄. Corresponding dash lines represent the *d* band center for the bulk Ni (2.53 eV), Ni₃Sn₁ (-0.11 eV), Ni₃Sn₂ (-0.67 eV) and Ni₃Sn₄ (-1.14 eV). (B) Reaction rate *vs. d* band center of (a) Ni, (b) Ni₃Sn₁, (c) Ni₃Sn₂, (d) Ni₃Sn₄.

Entry	Catalyst	Time	Conversion	Selectivity	Reaction F	Rate Ref.
		(h)	(%)	(%)	$($ mmolg $^{-1}$	h ⁻¹)
1	Ni/Al ₂ O ₃	3	100	2	135.6	This work
2	Ni_3Sn_1/Al_2O_3	3	100	75	67.7	This work
3	Ni_3Sn_2/Al_2O_3	3	100	99	55.8	This work
4	Ni ₃ Sn ₄ /Al ₂ O ₃	3	38	99	14.9	This work
5	Ni/C	3	67	60	52.6	[2]
6	Ni/SiO ₂	3	99	50	46.9	[2]
7	Ni-Cu/TiO ₂	2	91	35	62.8	[3]
8	Ni-Cu/Al ₂ O ₃	2	99	3	65.2	[3]
9	Ni-Fe(2)HT-673	3	99	96	43.1	[4]
10	Ni-Co(1)HT-673	3	85	89	38.5	[4]
11	20NiCoB/SiO ₂	2	54	83	26.3	[5]
12	20NiCoB/ Al ₂ O ₃	2	52	91	24.1	[5]
13	Pt@mSiO ₂	5	25	34	11.4	[6]
14	PtSn@mSiO ₂	5	99	97	49.8	[6]
15	Pt/Al ₂ O ₃	7	80	99	30.1	[7]
16	Pt/MgO	7	79	97	29.7	[7]
17	Pt/CeO ₂ NH ₂	7	77	98	28.4	[7]
18	Pt-CeO ₂ @UIO	1	100	98	78.3	[8]
19	Pt-CeO ₂	1	99	1	77.4	[8]

Table S4 Comparison of catalytic performance for selective hydrogenation of furfural to furfuryl alcohol over various catalysts

Entry	Catalyst	Exposure	Exposure	Conversion	Selectivity
		Atmosphere	Time	(%)	(%)
1	Ni ₃ Sn ₂ /Al ₂ O ₃			100	99
2	Ni ₃ Sn ₂ /Al ₂ O ₃	Air	1 day	100	98
3	Ni ₃ Sn ₂ /Al ₂ O ₃	Air	3 days	97	97
4	Ni ₃ Sn ₂ /Al ₂ O ₃	Air	5 days	95	96
5	Ni ₃ Sn ₂ /Al ₂ O ₃	Air	7 days	95	96

Table S5 Catalytic performance of Ni₃Sn₂ after storage in air for one week

Reaction conditions: furfural/Ni = 58 (molar ratio); furfural, 1.0 mL; iso-PrOH, 30 mL; temperature, 100 °C; H_2 pressure, 2 MPa; reaction time, 4 h.

Table S6 Catalytic performance for hydrogenation of different kinds of unsaturated aldehydes over Niand Ni_3Sn_2 IMC

Entry	Substrate	Product	Ni		Ni ₃ Sn ₂	
			Con.	Sel.	Con.	Sel.
1	\sim	ЛОН	91%	0	45%	54%
2	$\checkmark \checkmark \checkmark \diamond \diamond \diamond$	ОН	100%	1%	42%	71%
3	$\frown \frown $	ОН	97%	0	64%	62%
4		С	76%	2%	23%	69%
5	0	ОН	80%	1%	36%	57%
6		ОН	92%	1%	49%	32%

Reaction conditions: furfural/Ni = 58 (molar ratio); furfural, 1.0 mL; iso-PrOH, 30 mL; temperature, 100 °C; H_2 pressure, 2 MPa, reaction time, 6 h.

Fig. S9 Optimized adsorption structures and adsorption energies of furfural at Sn site (A1–A4) and Ni site (B1–B4) on the surface of Ni₃Sn₂(101).

Fig. S10 Potential energy profiles for hydrogenation of furfural to tetrahydrofurfuryl alcohol on Ni(111) surface. Red line, H atom attacks O1. Blue lines, H atom attacks C1. Green line, H atom attacks C3 in furfural. The black arrow represents desorption of furfuryl alcohol. Numbers in the parentheses represent reaction barriers of elementary step, and others stands for adsorption energies.

Free energies/eV	R1	R2	R3	R4	R5
Δ <i>G</i> (353 K)	-0.60	-0.47	0.23	0.82	0.52
$\Delta G(363 \text{ K})$	-0.60	-0.47	0.23	0.83	0.51
$\Delta G(373 \text{ K})$	-0.59	-0.46	0.24	0.84	0.50
$\Delta G(383 \text{ K})$	-0.59	-0.45	0.24	0.85	0.40
$\Delta G(393 \text{ K})$	-0.58	-0.44	0.24	0.87	0.49

Table S7 Free energies at various reaction temperatures involved in the reaction process (R1–R5)

Table S8 Equilibrium constant for step R1–R3 and reaction rate constant for Step R3 and R4 at various reaction temperatures

T/K	<i>K</i> ₁ (mol/L) ⁻¹	$K_2 (\mathrm{mol/L})^{-1}$	K 3	$k_3 (\text{mol/L}) \cdot \text{s}^{-1}$	$k_4 (\text{mol/L}) \cdot \text{s}^{-1}$
353	4.22×10 ⁸	5.64×10 ⁶	4.76×10 ⁻⁴	7.71×10^{-10}	186.47
363	2.05×10 ⁸	2.91×10^{6}	5.52×10^{-4}	3.09×10 ⁻⁹	331.07
373	1.03×10 ⁸	1.56×10^{6}	6.35×10 ⁻⁴	1.15×10^{-8}	569.91
383	5.38×10 ⁷	8.61×10 ⁵	7.25×10^{-4}	3.99×10 ⁻⁸	683.31
393	2.91×10 ⁷	4.91×10 ⁵	8.21×10^{-4}	1.30×10^{-7}	765.06

Fig. S11 Rate constant k_3 as a function of reaction temperature.

References

- [1] H. Fjellvåg, A. Kjekshus, Acta Chem. Scand., A 1986, 40, 23-30.
- [2] H. Jeong, C. Kim, S. Yang, H. Lee, J. Catal., 2016, 344, 609-615.
- [3] B. Seemala, C. M. Cai, C. E. Wyman, P. Christopher, ACS Catal., 2017, 7, 4070–4082.
- [4] W. S. Putro, T. Kojima, T. Hara, N. Ichikuni, S. Shimazu, Catal. Sci. Technol. 2017, 7, 3637–3646.
- [5] H. Guo, H. Zhang, L. Zhang, C. Wang, F. Peng, Q. Huang, L. Xiong, C. Huang, X. Ouyang, X. Chen, X. Qiu, *Ind. Eng. Chem. Res.*, 2018, 57, 498–511.
- [6] R. V. Maligal-Ganesh, C. Xiao, T. W. Goh, L. Wang, J. Gustafson, Y. Pei, Z. Qi, D. D. Johnson, S. Zhang, F. Tao, W. Huang, ACS Catal., 2016, 6, 1754–1763.
- [7] M. J. Taylor, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, K. Wilson, A. F. Lee, G. Kyriakou, *Appl. Catal.*, *B Environ.*, 2016, **180**, 580–585.
- [8] Y. Long, S. Song, J. Li, L. Wu, Q. Wang, Y. Liu, R. Jin, H. Zhang, ACS Catal., 2018, 8, 8506-8512.