AuPd/NiO as effective catalyst for the base -free oxidation of HMF at mild reaction conditions

Danilo Bonincontro^a, Alice Lolli^a, Alberto Villa^b, Laura Prati^b, Nikolaos Dimitratos^a, Gabriel M. Veith^c, Lidia E. Chinchilla^d, Gianluigi A. Botton^d Fabrizio Cavani^a, Stefania Albonetti^a

^aDipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.

^b Dipartimento di Chimica, Università degli Studi di Milan, Milan Italy.

^c Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

^d Canadian Centre of Electron Microscopy and Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.

Supporting Information

Figure S1 a) STEM-HAADF image of fresh Au-nNiO, and b) particle size distribution.

Figure S2 a) STEM-HAADF image of fresh Pd-nNiO and b) particle size distribution.

Figure S3 a) STEM-HAADF image of fresh AuPd-nNiOand b) particle size distribution.

Figure S4 Binding energy of Au4f and Pd3d, for Au-nNiO, Pd-nNiO, AuPd-nNiO samples.

Figure S5 O1s and Ni2p peaks for Pd and AuPd-nNiO.

Figure S6 Temperature and reaction time optimization for Au-nNiO catalyst.

Figure S7 Comparison of a typical solution after reaction (left, carbon balance >98%) and a reaction carried out under high pH conditions (right, carbon balance <60%).

Figure S8 HPLC analysis of solution at the end of reaction: catalyst Au-nNiO, reactant DFF (entry 2 table 2), operative conditions: 90°C, O₂ pressure 10bar.

HPLC-MS undefined compound "X"

Figure S9 HPLC analysis of solution at the end of reaction: catalyst nNiO, reactant DFF (entry 4 table 2), operative conditions: 90° C, O₂ pressure 10bar.

HPLC-MS undefined compound "Y"

Figure S10 a) TEM image and b) particle size distribution of used AuPd-nNiO.

Counts 7 8 9 10 11 12 13 14 15 16 1 2 Particle size (nm)

b)

Figure S11 XPS of used AuPd-nNiO a) Au4f and b) Pd3d.

a)

b)

Catalyst	metal/HMF	Temperature	Oxidant	Time	FDCA	Reference
	ratio		(pressure)		yield	
AuPd/CNT	1/100	100	O2 (5)	12	94	1
Pt/CNT	1/100	100	O2 (5)	14	98	2
Ru/C	1/10	120	O2 (2)	10	88	3
Au/HT	1/40	95	O2 (flow)	7	>99	4
AuPd/LDH	1/50	100	O2 (5)	6	84.5	5
Ru/CTFs	1/40	140	Air (2)	1	41.4	6
Ru/MnCo ₂ O ₄	1/33.6	100	Air (24)	10	99.1	7
$Ce_{0.5}Fe_{0.15}Zr_{0.35}O_2$	-	160	O2 (20)	24	44.7	8
AuPd-nNiO	1/100	90	O2 (10)	14	100	This work

Table S1 Comparison of different catalytic systems for base-free HMF oxidation.

Table S2 Catalytic behavior of Pd-nNiO and Au-nNiO under different operative conditions (HMF:metal molar ratio = 100:1, O₂ pressure 10 bar).

Catalyst	Time (h)	HMF:NaOH	HMF	DFF	HMFCA	FFCA	FDCA
		molar ratio	conver	yield (%)	yield (%)	yield (%)	yield (%)
			sion				
			(%)				
Pd-nNiO	15	-	8	1	2	4	1
Pd-nNiO	6	-	6	9	3	4	1
Pd-nNiO	6	1:2	77	0	13	4	1
Au-nNiO	0.5	-	15	2	5	0	7
Au-nNiO	0.5	1:2	72	0	36	6	1

Table S3 Effect of DFF:FFCA molar ratio on Au-nNiO catalytic performances.

Reactant	Time	DFF:FFCA	DFF	FDCA	
		molar ratio	conversion	yield	
DFF+FFCA	2	2.9	21	2	
DFF+FFCA	2	0.45	30	1	

Table S4 XRF analyses on AuPd-nNiO samples.

Sample	Nominal	Au/Pd	Measured	Au/Pd	Nominal	metal	Measured	metal
	molar rario		molar ratio		loading (wt%)		loading (wt%)	
AuPd-nNiO fresh	1.5		1.49		1.0		1.02	
AuPd-nNiO used	1.5		1.45		1.0		1.03	

References

- 1. X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang and Y. Wang, ACS Catalysis, 2014, 4, 2175-2185.
- 2. C. Zhou, W. Deng, X. Wan, Q. Zhang, Y. Yang and Y. Wang, *ChemCatChem*, 2015, **7**, 2853-2863.

- 3. G. Yi, S. P. Teong and Y. Zhang, *Green Chemistry*, 2016, **18**, 979-983.
- 4. N. K. Gupta, S. Nishimura, A. Takagaki and K. Ebitani, *Green Chemistry*, 2011, **13**, 824-827.
- 5. Z. Gao, R. Xie, G. Fan, L. Yang and F. Li, *ACS Sustainable Chemistry & Engineering*, 2017, **5**, 5852-5861.
- 6. J. Artz and R. Palkovits, *ChemSusChem*, 2015, **8**, 3832-3838.
- 7. D. K. Mishra, H. J. Lee, J. Kim, H.-S. Lee, J. K. Cho, Y.-W. Suh, Y. Yi and Y. J. Kim, *Green Chemistry*, 2017, **19**, 1619-1623.
- 8. D. Yan, J. Xin, C. Shi, X. Lu, L. Ni, G. Wang and S. Zhang, *Chemical Engineering Journal*, 2017, **323**, 473-482.