Ambient and aerobic carbon-carbon bond cleavage toward a-

ketoester synthesis by transition-metal-free photocatalysis

Qing Yu,^a Yating Zhang,^a Jie-Ping Wan*^a

^aCollge of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China

Email: <u>wanjieping@jxnu.edu.cn</u>

Contents

General experimental information	S2
The ESI-HRMS spectra of the ¹⁸ O-labeled product 3al	S2
General procedure for the synthesis of quinoxalin-2(1 <i>H</i>)-ones 5	
Characterization data of all products	
References	S18
¹ H and ¹³ C NMR spectra of all products	S19-S64

General experimental information

All experiments were carried out under air atmosphere. The enaminones **1** were synthesized following literature process,¹⁻² all other chemicals used in the experiments were obtained from commercial sources and used directly without further treatment. ¹H and ¹³C NMR spectra were recorded in 400 MHz apparatus in CDCl₃. The frequencies for ¹H NMR and ¹³C NMR test are 400 MHz and 100 MHz, respectively. The chemical shifts were reported in ppm with TMS as internal standard. Melting points were tested in X-4A instrument without correcting temperature and the HRMS data for all new products were obtained under ESI model with TOF analyzer.

Figure S1 The ESI-HRMS spectra of the ¹⁸O-labeled product 3al

The fluorescence quenching experiments of RB with enaminone 1a. The fluorescence quenching experiments were recorded in a Hitachi F-7000 fluorescence spectrophotometer. The excitation wavelength and emission wavelength were fixed at 527 nm and 537 nm, respectively. In the blank experiment, RB solution of EtOH was recorded in the concentration of 1×10^{-3} mol/L. Subsequently, different amounts of enaminone 1a was solved in the solution, and the resulting changes in fluorescence intensity in the 1a concentration of 2×10^{-2} mol/L, 4×10^{-2} mol/L, 6×10^{-2} mol/L, 8×10^{-2} mol/L, 10×10^{-2} mol/L, 12×10^{-2} mol/L were collected in Figure S2. According to the results as well as the corresponding Stern-Volmer plots (Figure S3), the enaminone 1a did not show quenching effect to the fluorescence intensity of RB, which indicated that enaminone 1 was not the energy acceptor of the excited RB in the titled reaction.

Figure S2 The quenching of RB fluorescence emission with enaminone 1a

Figure S3 the Stern-Volmer plot. I_0 is the inherent fluorescence intensity of RB. I is the fluorescence intensity of RB in the presence of 1a

General procedure for the synthesis of of α -ketoesters 3. In a 15 mL test tube were charged with enaminone 1 (0.2 mmol), RB (0.002 mmol), AcOH (0.4 mmol), alcohol 2 (1 mL, or 1 mmol solid alcohol substrate and 1 mL DMF) and 4Å molecular sieve (80 mg). The mixture was irradiation with 20 W green LEDs for 24h at room temperature. Upon completion (TLC), the mixture was moved to the round bottom flask, and the reaction tube was washed additionally with ethyl acetate (5mL) to fully transfer the residue. The solvent in the flask was then removed at reduced pressure, and the residue was purified by silica gel column chromatography with the elution of mixed ethyl acetate and petroleum ether (v/v = 1:20-1:3). For the reaction of solid alcohols, after the reaction completion, water (5 mL) was added to the vessel, and the suspension was extracted with ethyl acetate (3 ×10 mL). The combined organic phase

was dried over Na₂SO₄. After filtering, the acquired solution was employed to reduced pressure to remove the organic solvent. And analogous chromatographic purification using mixed ethyl acetate and petroleum (v/v = 1:8) as eluent was executed to obtain corresponding products.

General procedure for the synthesis of quinoxalin-2(1*H*)-ones 5. In a 15 mL test tube were charged with enaminone 1 (0.2 mmol), RB (0.002 mmol), AcOH (0.4 mmol), alcohol 2 (1 mL, or 1 mmol solid alcohol substrate and 1 mL DMF) and 4Å molecular sieve (80 mg). The mixture was irradiation with 20 W green LEDs for 24h at room temperature. Subsequently, diamine 4 (0.2 mmol) solved in EtOH (1 mL) was added, and the resulting mixture was further stirred at room temperature for 12 h. Upon completion (TLC), the mixture was moved to the round bottom flask, and the residue. The solvent in the flask was then removed at reduced pressure, and the residue was purified by silica gel column chromatography with the elution of mixed ethyl acetate and petroleum ether (v/v = 1:5).

Characterization data of all products

Ethyl 2-oxo-2-phenylacetate (**3a**)³ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.04-8.00 (m, 2 H), 7.66 (t, J = 7.4 Hz, 1 H), 7.52 (t, J = 7.8 Hz, 2 H), 4.46 (q, J = 7.0 Hz, 2 H), 1.43 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 163.8, 134.9, 132.5, 130.0, 128.9, 62.3, 14.1.

Ethyl 2-oxo-2-(p-tolyl)acetate (**3b**)⁴ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.2 Hz, 2 H), 7.30 (d, *J* = 8.0 Hz, 2 H), 4.44 (q, *J* = 7.0 Hz, 2 H), 2.43 (s, 3 H), 1.42 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 164.0, 146.2, 130.1, 129.6, 129.0, 62.2, 21.9, 14.1.

Ethyl 2-(4-methoxyphenyl)-2-oxoacetate (**3c**)⁴ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 8.0 Hz, 2 H), 6.97 (d, *J* = 8.0 Hz, 2 H), 4.43 (q, *J* = 7.0 Hz, 2 H), 3.89 (s, 3 H), 1.42 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 184.9, 165.0, 164.2, 132.5, 125.5, 114.2, 62.1, 55.6, 14.1.

Ethyl 2-(4-fluorophenyl)-2-oxoacetate (3d)³ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.16-7.99 (m, 2 H), 7.24-7.12 (m, 2 H), 4.45 (q, *J* = 7.2 Hz, 2 H), 1.43 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 184.5, 166.9 (d, ¹*J*_{C-F} = 257 Hz), 163.4, 133.0, 132.9, 129.7(d, ⁴*J*_{C-F} = 3 Hz), 116.2 (d, ²*J*_{C-F} = 22 Hz), 62.4, 14.1.

Ethyl 2-(4-chlorophenyl)-2-oxoacetate (**3e**)⁴ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.6 Hz, 2 H), 7.49 (d, *J* = 8.6 Hz, 2 H), 4.45 (q, *J* = 7.0 Hz, 2 H), 1.42 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 184.9, 163.2, 141.6, 131.4, 134.0, 129.3, 62.5, 14.1.

Ethyl 2-(4-bromophenyl)-2-oxoacetate (**3f**)⁵ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.6 Hz, 2 H), 7.66 (d, *J* = 8.6 Hz, 2 H), 4.45 (q, *J* = 7.0 Hz, 2 H), 1.42 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 185.1, 163.2, 132.3, 131.4, 131.4, 130.5, 62.5, 14.1.

Ethyl 2-(4-cyanophenyl)-2-oxoacetate (**3g**)⁶ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, *J* = 8.0 Hz, 2 H), 7.82 (d, *J* = 8.0 Hz, 2 H), 4.47 (q, *J* = 7.0 Hz, 2 H), 1.44 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 184.4, 162.4, 135.6, 132.6, 130.4, 117.9, 117.5, 62.9, 14.1.

Ethyl 2-oxo-2-(o-tolyl)acetate (3h)³ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 7.8 Hz, 1 H), 7.51-7.46 (m, 1 H), 7.31 (t, J = 8.0 Hz, 2 H), 4.43 (q, J = 7.0 Hz, 2 H), 2.61 (s, 3 H), 1.41 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 188.8, 164.6, 141.3, 133.6, 132.3, 132.2, 131.3, 125.9, 62.2, 21.4, 14.1.

Ethyl 2-oxo-2-(m-tolyl)acetate (3i)⁷ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.2 Hz, 2 H), 7.46 (d, J = 7.4 Hz, 1 H), 7.39 (t, J = 7.8 Hz, 1 H), 4.45 (q, J = 7.0 Hz, 2 H), 2.42 (s, 3 H), 1.42 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.6, 164.0, 138.8, 135.7, 132.5, 130.3, 128.8, 127.3, 62.2, 21.2, 14.1.

Ethyl 2-(3-methoxyphenyl)-2-oxoacetate (**3j**)⁸ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.52 (m, 2 H), 7.42 (t, *J* = 7.8 Hz, 1 H), 7.20 (dd, *J* = 8.2, 2.2 Hz, 1 H),

4.45 (q, *J* = 7.0 Hz, 2 H), 3.86 (s, 3 H), 1.43 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.3, 163.9, 156.0, 133.7, 129.9, 123.1, 121.8, 113.3, 62.3, 55.5, 14.1.

Ethyl 2-(3-chlorophenyl)-2-oxoacetate (**3k**)⁸ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (s, 1 H), 7.84 (d, *J* = 7.8 Hz, 1 H), 7.58-7.52 (m, 1 H), 7.39 (t, *J* = 7.8 Hz, 1 H), 4.38 (q, *J* = 7.0 Hz, 2 H), 1.36 (t, *J* = 7.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 184.8, 163.0, 135.2, 134.8, 134.1, 130.2, 129.9, 128.2, 62.6, 14.1.

Ethyl 2-(3,4-dichlorophenyl)-2-oxoacetate (**31**)⁹ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.15 (s, 1 H), 7.89 (dd, J = 8.2, 1.6 Hz, 1 H), 7.60 (d, J = 8.4 Hz, 1 H), 4.46 (q, J = 7.0 Hz, 2 H), 1.43 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 183.6, 162.5, 139.7, 133.7, 132.2, 131.8, 131.0, 129.0, 62.8, 14.1.

Ethyl 2-(3,4-dimethoxyphenyl)-2-oxoacetate (**3m**)⁴ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (dd, 1 H), 7.56 (d, *J* = 1.8 Hz, 1 H), 6.93 (d, *J* = 8.4 Hz, 1 H), 4.44 (q, *J* = 7.0 Hz, 2 H), 3.96 (s, 6 H), 1.42 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 185.0, 164.1, 155.0, 149.4, 126.2, 125.6, 110.8, 110.3, 62.1, 56.2, 56.1, 14.1.

Ethyl 2-(naphthalen-1-yl)-2-oxoacetate (**3n**) Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 9.04 (d, J = 8.6 Hz, 1 H), 8.10 (d, J = 8.2 Hz, 1 H), 7.98 (dd, 1 H), 7.90 (d, J = 8.0 Hz, 1 H), 7.70-7.66 (m, 1 H), 7.60-7.52 (m, 2 H), 4.48 (q, J = 7.0 Hz, 2 H),

1.43 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 188.9, 164.6, 135.8, 134.0, 133.9, 131.0, 129.3, 128.8, 128.3, 127.0, 125.6, 124.3, 62.4, 14.1; ESI-HRMS Calcd for C₁₄H₁₂O₃Na [M+Na]⁺ 251.06787, found 251.06723.

Ethyl 2-(naphthalen-2-yl)-2-oxoacetate (3o)³ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.55 (s, 1 H), 8.04 (dd, J = 8.6, 1.6 Hz, 1 H), 7.96 (d, J = 8.2 Hz, 1 H), 7.89 (dd, J = 15.6, 8.4 Hz, 2 H), 7.66-7.61 (m, 1 H), 7.59-7.54 (m, 1 H), 4.51 (q, J = 7.0 Hz, 2 H), 1.45 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.3, 163.9, 136.4, 133.4, 132.3, 123.0, 129.9, 129.5, 128.9, 127.9, 127.2, 124.0, 62.4, 14.2.

Ethyl 2-oxo-2-(thiophen-3-yl)acetate $(3p)^{10}$ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1 H), 7.69 (d, J = 5.0 Hz, 1 H), 7.38-7.34 (m, 1 H), 4.42 (q, J = 7.0 Hz, 2 H), 1.42 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 178.2, 162.4, 137.6, 127.9, 126.6, 62.5, 14.1.

Ethyl 2-oxo-2-(thiophen-2-yl)acetate (**3q**)⁴ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (dd, *J* = 3.8, 1.0 Hz, 1 H), 7.83 (dd, *J* = 4.8, 1.0 Hz, 1 H), 7.22-7.17 (m, 1 H), 4.44 (q, *J* = 7.0 Hz, 2 H), 1.43 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 176.4, 161.7, 139.1, 137.4, 137.2, 128.6, 62.7, 14.0.

Ethyl

2-((3S,8R,9S,10R,13S,14S)-3-Acetoxy-10,13-dimethyl-

2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-

2-oxoacetate (**3r**) White solid; mp 143-144 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.13-7.10 (m, 1 H), 5.39 (d, *J* = 5.0 Hz, 1 H), 4.61 (tt, *J* = 10.4, 5.2 Hz, 1 H), 4.33 (q, *J* = 7.0 Hz, 2 H), 2.47-2.39 (m, 2 H), 2.36-2.31 (m, 2 H), 2.17-2.10 (m, 1 H), 2.04 (s, 3 H), 1.89-1.84 (m, 2 H), 1.72-1.48 (m, 8 H), 1.36 (q, *J* = 6.6, 6.0 Hz, 4 H), 1.19-1.14 (m, 1 H), 1.07 (s, 3 H), 0.97 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 183.7, 170.5, 163.1, 152.7, 151.0, 140.3, 121.9, 73.8, 62.0, 56.0, 50.4, 46.5, 38.1, 36.9, 36.8, 34.1, 33.3, 31.5, 30.1, 27.7, 21.4, 20.6, 19.2, 15.6, 14.1; ESI-HRMS Calcd for C₂₅H₃₄O₅Na [M+Na]⁺ 437.22985, found 437.22942.

Methyl 2-oxo-2-phenylacetate (**3ab**)¹¹ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.04-8.00 (m, 2 H), 7.67 (t, *J* = 7.4 Hz, 1 H), 7.52 (t, *J* = 7.8 Hz, 2 H), 3.98 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 164.0, 135.0, 132.5, 130.1, 128.9, 52.7.

Propyl 2-oxo-2-phenylacetate (**3ac**)¹¹ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.04-7.98 (m, 2 H), 7.66 (t, *J* = 7.4 Hz, 1 H), 7.52 (t, *J* = 7.8 Hz, 2 H), 4.36 (t, *J* = 6.6 Hz, 2 H), 1.81 (q, *J* = 7.0 Hz, 2 H), 1.02 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 164.0, 134.8, 132.5, 123.0, 128.9, 67.7, 21.9, 10.3.

Butyl 2-oxo-2-phenylacetate (**3ad**)¹¹ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.06-7.95 (m, 2 H), 7.66 (t, J = 7.4 Hz, 1 H), 7.51 (t, J = 7.8 Hz, 2 H), 4.40 (t, J = 6.6 Hz, 2 H), 1.80-1.73 (m, 2 H), 1.50-1.41 (m, 2 H), 0.97 (t, J = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.5, 164.0, 134.9, 134.8, 132.5, 123.0, 128.9, 66.1, 30.5, 19.0, 13.6.

Isopropyl 2-oxo-2-phenylacetate (**3ae**)¹¹ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 7.6 Hz, 2 H), 7.66 (t, *J* = 7.4 Hz, 1 H), 7.51 (t, *J* = 7.8 Hz, 2 H), 5.37-5.29 (m, 1 H), 1.42 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.7, 163.6, 134.8, 132.6, 129.9, 128.9, 70.7, 21.7.

3-Chloropropyl 2-oxo-2-phenylacetate (**3af**)⁷ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.05-7.97 (m, 2 H), 7.70-7.65 (m, 1 H), 7.53 (t, *J* = 7.8 Hz, 2 H), 4.56 (t, *J* = 6.0 Hz, 2 H), 3.67 (t, *J* = 6.2 Hz, 2 H), 2.25 (p, *J* = 6.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 163.6, 135.0, 132.4, 130.0, 129.0, 62.7, 40.8, 31.2.

Cyclopentyl 2-oxo-2-phenylacetate (**3ag**)¹² Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.02-7.95 (m, 2 H), 7.68-7.63 (m, 1 H), 7.51 (t, *J* = 7.0 Hz, 2 H), 5.52-5.46 (m, 1 H), 2.03-1.97 (m, 2 H), 1.92-1.86 (m, 2 H), 1.82-1.75 (m, 2 H), 1.68-1.62 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.7, 163.9, 134.8, 132.6, 129.9, 128.9, 79.7, 32.7, 23.7.

Cyclohexyl 2-oxo-2-phenylacetate (**3ah**)¹³ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 7.2 Hz, 2 H), 7.66 (t, *J* = 7.4 Hz, 1 H), 7.51 (t, *J* = 7.6 Hz, 2 H), 5.14-5.06 (m, 1 H), 2.04-1.98 (m, 2 H), 1.84-1.76 (m, 2 H), 1.61-1.57 (m, 3 H), 1.48-1.40 (m, 2 H), 1.33-1.28 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.8, 163.7, 134.7, 132.6, 129.9, 128.9, 75.4, 31.5, 25.2, 23.6.

Pent-4-en-1-yl 2-oxo-2-phenylacetate (**3ai**) Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 7.0 Hz, 2 H), 7.66 (t, J = 7.2 Hz, 1 H), 7.52 (t, J = 7.0 Hz, 2 H), 5.90-5.72 (m, 1 H), 5.13-4.95 (m, 2 H), 4.40 (t, J = 5.6 Hz, 2 H), 2.19 (d, J = 7.2 Hz, 2 H), 1.95-1.81 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 163.9, 136.9, 134.9, 132.5, 130.0, 128.9, 115.8, 65.6, 29.8, 27.6; ESI-HRMS Calcd for C₁₃H₁₄O₃Na [M+Na]⁺ 241.08352, found 241.08300.

But-3-yn-1-yl 2-oxo-2-phenylacetate (**3aj**) Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.07-8.00 (m, 2 H), 7.70-7.65 (m, 1 H), 7.52 (t, J = 7.6 Hz, 2 H), 4.51 (t, J = 6.8 Hz, 2 H), 2.70 (td, J = 6.8, 2.6 Hz, 2 H), 2.06 (t, J = 2.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 185.9, 163.4, 135.0, 132.4, 130.1, 128.9, 79.2, 70.6, 63.6, 18.9; ESI-HRMS Calcd for C₁₂H₁₀O₃Na [M+Na]⁺ 225.05222, found 225.05182.

Naphthalen-1-ylmethyl 2-oxo-2-phenylacetate (**3ak**) Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 8.2 Hz, 1H), 7.94-7.88 (m, 4 H), 7.65-7.43 (m, 7 H), 5.89 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 163.8, 134.9, 133.8, 132.4, 131.5, 130.1, 130.0, 129.9, 128.9, 128.2, 126.8, 126.1, 125.3, 123.3, 66.0; ESI-HRMS Calcd for C₁₉H₁₄O₃Na [M+Na]⁺ 313.08352, found 313.08267.

Phenethyl 2-oxo-2-phenylacetate $(3al)^{13}$ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 7.8 Hz, 2 H), 7.63 (t, J = 7.4 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 2H), 7.33-7.24 (m, 5 H), 4.62 (t, J = 7.0 Hz, 2 H), 3.09 (t, J = 7.0 Hz, 2 H); ¹³C NMR (100

MHz, CDCl₃): δ 186.3, 163.7, 137.0, 134.9, 132.4, 130.0, 129.0, 128.9, 128.7, 126.9, 66.4, 35.0.

4-Methylphenethyl 2-oxo-2-phenylacetate (**3am**) Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.89-7.84 (m, 2 H), 7.63 (t, *J* = 7.4 Hz, 1 H), 7.45 (t, *J* = 7.8 Hz, 2 H), 7.15-7.10 (m, 4 H), 4.59 (t, *J* = 7.0 Hz, 2 H), 3.05 (t, *J* = 7.0 Hz, 2 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.3, 163.7, 136.4, 134.8, 133.8, 132.4, 130.0, 129.4, 128.9, 128.8, 66.6, 34.6, 21.1; ESI-HRMS Calcd for C₁₇H₁₆O₃Na [M+Na]⁺ 291.09917, found 291.09852.

2-Chlorophenethyl 2-oxo-2-phenylacetate (**3an**)¹⁴ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.80 (m, 2 H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2 H), 7.28 (d, *J* = 8.4 Hz, 2 H), 7.19 (d, *J* = 8.4 Hz, 2 H), 4.60 (t, *J* = 6.8 Hz, 2 H), 3.06 (t, *J* = 6.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 163.6, 135.5, 134.9, 132.8, 132.3, 130.4, 123.0, 128.9, 128.8, 66.0, 34.3.

4-Bromophenethyl 2-oxo-2-phenylacetate (**3ao**)¹⁴ Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 7.8 Hz, 2 H), 7.65 (t, *J* = 7.4 Hz, 1 H), 7.49-7.42 (m, 4 H), 7.13 (d, *J* = 8.2 Hz, 2 H), 4.59 (t, *J* = 6.8 Hz, 2 H), 3.04 (t, *J* = 6.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 163.6, 136.0, 135.0, 132.3, 131.8, 130.8, 130.0, 128.9, 120.8, 65.9, 34.4.

Thiophen-2-ylmethyl 2-oxo-2-phenylacetate (**3ap**) Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.99-7.93 (m, 2 H), 7.66-7.62 (m, 1 H), 7.48 (t, *J* = 7.8 Hz, 3 H), 7.38 (dd, *J* = 5.1, 1.0 Hz, 1 H), 7.22 (d, *J* = 3.4 Hz, 1 H), 7.04-6.99 (m, 1 H), 5.57 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 185.8, 163.4, 136.2, 135.0, 132.4, 130.1, 129.5, 128.9, 127.7, 127.1, 61.8; ESI-HRMS Calcd for C₁₁H₁₂O₅SNa [M+Na]⁺ 269.02429, found 269.02385.

Ethyl 2-(2-oxo-2-phenylacetoxy)propanoate (3aq) Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 7.4 Hz, 2 H), 7.68 (t, *J* = 7.4 Hz, 1 H), 7.54 (t, *J* = 7.6 Hz, 2 H), 5.33 (q, *J* = 7.0 Hz, 1 H), 4.30 (q, *J* = 7.0 Hz, 2 H), 1.64 (d, *J* = 7.0 Hz, 3 H), 1.34 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 169.8, 163.4, 135.1, 132.4, 130.3, 128.9, 70.3, 61.9, 16.8, 14.1; ESI-HRMS Calcd for C₁₃H₁₄O₅Na [M+Na]⁺ 273.07334, found 273.07251.

4-Hydroxyphenethyl 2-oxo-2-phenylacetate (3ar) Yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 2 H), 7.64 (t, J = 7.0 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 7.12 (d, J = 8.0 Hz, 2 H), 6.78 (d, J = 8.0 Hz, 2 H), 4.99 (s, 1 H), 4.57 (t, J = 6.8 Hz, 2 H), 3.01 (t, J = 7.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 186.4, 163.8, 154.5, 134.9, 132.4, 130.2, 130.0, 129.1, 128.8, 115.5, 66.6, 34.1; ESI-HRMS Calcd for C₁₆H₁₄O₄Na [M+Na]⁺ 293.07843, found 293.07780.

2-Hydroxyethyl 2-oxo-2-phenylacetate (**3as**) Reddish brown liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 7.2 Hz, 2 H), 7.67 (t, *J* = 7.4 Hz, 1 H), 7.51 (t, *J* = 7.6 Hz, 2 H), 4.54-4.47 (m, 2 H), 3.99-3.93 (m, 2 H), 2.24 (s, 1 H); ¹³C NMR (100 MHz,

CDCl₃): δ 186.1, 163.6, 135.1, 132.4, 130.2, 128.9, 67.5, 60.6; ESI-HRMS Calcd for C₁₀H₁₀O₄Na [M+Na]⁺ 217.04713, found 217.04684.

2,3-Dihydroxypropyl 2-oxo-2-phenylacetate (**3at**) Light brown liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.2 Hz, 2 H), 7.66 (t, J = 7.4 Hz, 1 H), 7.50 (t, J = 7.0 Hz, 2 H), 4.51-4.38 (m, 2 H), 4.12-4.05 (m, 1 H), 3.81-3.74 (m, 1 H), 3.72-3.65 (m, 1 H), 3.13-3.02 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 163.4, 135.2, 132.2, 130.2, 129.0, 69.8, 66.8, 63.2; ESI-HRMS Calcd for C₁₁H₁₂O₅Na [M+Na]⁺ 247.05769, found 247.05710.

3-Phenylquinoxalin-2(1H)-one (**5a**)¹⁵ Yellow solid; mp 244-245 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.57 (s, 1 H), 8.33-8.30 (m, 2 H), 7.86-7.83 (m, 1 H), 7.56-7.49 (m, 4 H), 7.37-7.33 (m, 2 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.1, 154.6, 136.1, 132.5, 132.5, 130.8, 130.6, 129.7, 129.2, 128.3, 123.8, 115.6.

3-(*p***-Tolyl)quinoxalin-2(1H)-one** (**5b**)¹⁵ Yellow solid; mp 264-265 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.50 (s, 1 H), 8.27 (d, *J* = 8.0 Hz, 2 H), 7.82 (d, *J* = 8.0 Hz, 1 H), 7.52 (t, *J* = 7.6 Hz, 1 H), 7.35-7.27 (m, 4 H), 2.38 (s, 3 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.1, 154.2, 140.5, 133.4, 132.5, 132.4, 130.5, 129.6, 129.1, 128.9, 123.8, 115.5, 21.5.

3-(4-Methoxyphenyl)quinoxalin-2(1H)-one (**5c**)¹⁵ Light yellow solid; mp 275-276 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.49 (s, 1 H), 8.40 (d, *J* = 8.8 Hz, 2 H), 7.81 (d, *J* = 7.8 Hz, 1 H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.35-7.29 (m, 2 H), 7.05 (d, *J* = 8.0 Hz, 2 H), 3.85 (s, 3 H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.5, 155.2, 153.6, 132.5, 132.2, 131.4, 130.2, 128.9, 128.6, 123.8, 115.5, 113.8, 55.8.

3-(4-Fluorophenyl)quinoxalin-2(1H)-one (**5d**) Yellow solid; mp 273-274 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.60 (s, 1 H), 8.46-8.39 (m, 2 H), 7.84 (d, *J* = 8.0 Hz, 1 H), 7.58-7.53 (m, 1 H), 7.37-7.30 (m, 4 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.8 (d, ¹*J*_{C-F} = 247 Hz), 155.0, 153.3, 132.6, 132.6, 132.5, 132.4, 132.2, 132.1 (d, ³*J*_{C-F} = 8 Hz), 129.2, 123.9, 115.6, 115.3 (d, ²*J*_{C-F} = 21 Hz); ESI-HRMS Calcd for C₁₄H₁₀FN₂O [M+Na]⁺ 241.07717, found 241.07677.

3-(4-Chlorophenyl)quinoxalin-2(1H)-one (**5e**)¹⁵ Yellow solid; mp 286-287 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.62 (s, 1 H), 8.39 (d, *J* = 8.0 Hz, 2 H), 7.84 (d, *J* = 8.0 Hz, 2 H), 7.59-7.55 (m, 3 H), 7.35 (d, *J* = 7.6 Hz, 2 H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.0, 153.2, 135.6, 134.8, 132.6, 132.4, 131.4, 131.0, 129.3, 128.4, 123.9, 115.6.

3-(4-Bromophenyl)quinoxalin-2(1H)-one (**5f**)¹⁵ Yellow solid; mp 282-283 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.63 (s, 1 H), 8.31 (d, *J* = 8.0 Hz, 2 H), 7.86-7.83 (m, 1 H), 7.71 (d, *J* = 8.0 Hz, 2 H), 7.58-7.54 (m, 1 H), 7.35 (d, *J* = 8.0 Hz, 2 H). ¹³C

NMR (100 MHz, DMSO-*d*₆): δ 155.0, 153.3, 135.2, 132.6, 132.4, 131.7, 131.4, 131.0, 129.3, 124.5, 124.0, 115.6.

3-(*m***-Tolyl)quinoxalin-2(1H)-one (5g)** Yellow solid; mp 225-226 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.56 (s, 1 H), 8.13 (d, *J* = 6.4 Hz, 2 H), 7.86-7.83 (m, 1 H), 7.57-7.52 (m, 1 H), 7.41-7.32 (m, 4 H), 2.41 (s, 3 H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.0, 154.7, 137.4, 136.1, 132.5, 131.3, 130.7, 130.0, 129.2, 128.2, 127.0, 123.8, 115.5, 21.6; ESI-HRMS Calcd for C₁₅H₁₂N₂ONa [M+Na]⁺ 259.08418, found 259.08373.

3-(Naphthalen-2-yl)quinoxalin-2(1H)-one (5h) Yellow solid; mp 135-136 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.64 (s, 1 H), 9.12 (s, 1 H), 8.40 (dd, *J* = 8.0, 4.0 Hz, 1 H), 8.06 (d, *J* = 7.2 Hz, 1 H), 7.99 (m, 2 H), 7.90 (d, *J* = 7.8 Hz, 1 H), 7.61-7.54 (m, 3 H), 7.40-7.33 (m, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.2, 154.0, 134.1, 133.5, 132.8, 132.6, 132.5, 130.8, 130.3, 129.5, 129.3, 128.0, 127.9, 127.7, 126.9, 126.4, 123.9, 115.6; ESI-HRMS Calcd for C₁₈H₁₂N₂ONa [M+Na]⁺ 295.08418, found 295.08369.

3-(Thiophen-2-yl)quinoxalin-2(1H)-one (**5i**)¹⁶ Yellow solid; mp 167-168 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.70 (s, 1 H), 8.44-8.41 (m, 1 H), 7.86-7.83 (m, 1 H), 7.79 (d, *J* = 8.0 Hz, 1 H), 7.55-7.51 (m, 1 H), 7.38-7.32 (m, 2 H), 7.27-7.24 (m, 1 H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.9, 149.4, 139.4, 132.5, 132.4, 131.9, 131.8, 130.2, 128.6, 128.4, 124.1, 115.8.

References

- (1) F. M. A. A. EL-Taweel, M. H. Elnagdi, J. Heterocyclic Chem. 2001, 38, 981.
- (2) Y. Gao, Y. Liu, J.-P. Wan, J. Org. Chem. 2019, 84, 2243.
- (3) Z. Zhang, J. Su, Z. Zha, Z. Wang, Chem. Eur. J. 2013, 19, 17711.
- (4) R. Infante, J. Nieto, C. Andres, Chem. Eur. J. 2012, 18, 4375.
- (5) Y. Xie, J. Liu, Y. Huang, L. Yao, Tetrahedron Lett. 2015, 56, 3793.
- (6) A. Nagaki, D. Ichinari, J. I. Yoshida, Chem. Commun. 2013, 49, 3242.
- (7) Y. Kumar, Y. Jaiswal, A. Kumar, J. Org. Chem. 2016, 81, 12247.
- (8) H. Shimizu, M. Murakami, Chem. Commun. 2007, 27, 2855.
- (9) A. Cochi, T. X. Metro, D. G. Pardo, J. Cossy, Org. Lett. 2010, 12, 3693.
- (10) R. Ntaganda, T. Milovic, J. Tiburcio, A. N. Thadani, *Chem. Commun.* 2008, 34, 4052.
- (11) T. Shao, X. Fang, J. Zhou, C. Jin, X. Yang, F. Wu, Synlett 2017, 28, 2018.
- (12) S. M. Nicolle, C. J. Hayes, C. J. Moody, Chem. Eur. J. 2015, 21, 4576.
- (13) C. Zhang, N. Jiao, Org. Chem. Front. 2014, 1, 109.
- (14) S. Guo, Z. Dai, Z. Yang, N. Zhu, L. Wan, X. Li, C. Liu, Z. Fang, K. Guo, *RSC Adv.* **2016**, *6*, 98422.
- (15) M. Nagaraj, S. Sathiyamoorthy, M. Boominathan, S. Muthusubramanian, N. Bhuvanesh, *J. Heterocyclic Chem.* 2013, *50*, 1146.
- (16) A. N. Matthew, J. Zephyr, C. J. Hill, M. Jahangir, A. Newton, C. J. Petropoulos,W. Huang, N. K. Yilmaz, C. A. Schiffer, A. Ali, *J. Med. Chem.* 2017, *60*, 5699.

¹H and ¹³C NMR spectra of all products

¹H and ¹³C NMR spectra of **3**a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

1 H and 13 C NMR spectra of **3b**

1 H and 13 C NMR spectra of **3**c

1 H and 13 C NMR spectra of **3d**

1 H and 13 C NMR spectra of **3**e

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 3f

1 H and 13 C NMR spectra of **3**g

1 H and 13 C NMR spectra of **3h**

¹H and ¹³C NMR spectra of **3i**

¹H and ¹³C NMR spectra of **3**j

1 H and 13 C NMR spectra of **3**k

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **31**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 3m

1 H and 13 C NMR spectra of **3n**

1 H and 13 C NMR spectra of **30**

¹H and ¹³C NMR spectra of **3p**

¹H and ¹³C NMR spectra of 3q

1 H and 13 C NMR spectra of **3**r

¹H and ¹³C NMR spectra of **3ab**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **3ac**

¹H and ¹³C NMR spectra of **3ad**

S39

¹H and ¹³C NMR spectra of **3ae**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **3af**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **3ag**

¹H and ¹³C NMR spectra of **3ah**

¹H and ¹³C NMR spectra of **3ai**

¹H and ¹³C NMR spectra of **3**aj

¹H and ¹³C NMR spectra of **3al**

¹H and ¹³C NMR spectra of **3am**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **3an**

¹H and ¹³C NMR spectra of **3ao**

¹H and ¹³C NMR spectra of **3ap**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 3aq

¹H and ¹³C NMR spectra of **3ar**

¹H and ¹³C NMR spectra of **3as**

¹H and ¹³C NMR spectra of **3at**

¹H and ¹³C NMR spectra of **5**a

 1 H and 13 C NMR spectra of **5b**

 1 H and 13 C NMR spectra of **5**c

1 H and 13 C NMR spectra of **5**d

¹H and ¹³C NMR spectra of **5**e

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **5**f

1 H and 13 C NMR spectra of 5g

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **5h**

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 5i

