ELECTRONIC SUPPORTING INFORMATION

PALLADIUM NANOPARTICLES SUPPORTED ON GRAPHENE ACID: A STABLE AND ECO-FRIENDLY BIFUNCTIONAL C-C HOMO- AND CROSS-COUPLING CATALYST

Matías Blanco^{a*}, Dario Mosconi^a, Cristina Tubaro^a, Andrea Biffis^a, Denis Badocco^a, Paolo Pastore^a, Michal Otyepka^b, Aristides Bakandritsos^b, Zhibo Liu^c, Wencai Ren^c, Stefano Agnoli^{a*} and Gaetano Granozzi^a

^a Department of Chemical Sciences and INSTM Unit, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy

^b Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic

^c Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, P. R. China

Summary

Extended characterization data Extended catalytic data NMR data for organic compounds

EXTENDED CHARACTERIZATION DATA

Figure S1. C 1s photoemission lines of pristine (left) and after impregnation (right) materials.

	_			
XPS	C (% at.)	N (% at.)	O (% at.)	Pd (% at.)
GA	81.0	4.5	14.5	-
GA-Pd-25	68.6	4.5	25.3	1.6
GA-Pd-50	71.1	3.8	22.4	2.7
GA-Pd-100	70.4	4.6	20.7	4.3
GA-Pd-200	71.0	4.2	19.7	5.1
GO	74.1	-	25.9	-
GO-Pd-100	63.5	3.1	31.1	2.3

Table S1. XPS surface composition

Table S2. Speciation of Pd 3d core level photoemission spectra.

XPS	Pd(0) (% at.)	PdO (% at.)	Pd-MeCN (% at.)
GA-Pd-25	28.8	56.5	14.7
GA-Pd-50	43.1	44.4	12.5
GA-Pd-100	53.4	36.3	10.3
GA-Pd-200	59.3	29.3	11.4

Figure S2. UV-Vis spectra of the different GA-Pd materials.

Figure S3. TEM images of pristine a) GA and b) GO

Figure S4. TEM image of GO-Pd-100. Inset: particle size distribution.

Figure S5. TEM image of a) GA-Pd-100 and b) GO-Pd-100 after 20 min of impregnation

Sample	Time (min)	ρ (nuclei μ m ⁻²)
GA-Pd-100	20	221
GO-Pd-100	20	91
GA-Pd-100	240	217
GO-Pd-100	240	41

Table S3. Density of nucleation (ρ) of the different hybrid materials.

Table S4. Elemental composition from EDX analysis.

EDX	$C + N (\% \text{ at.})^a$	O (% at.)	Pd (% at.)
GA-Pd-25	79.4	19.2	1.4
GA-Pd-50	71.1	25.6	3.3
GA-Pd-100	75.0	20.6	4.4
GA-Pd-200	75.5	19.4	5.1
GO-Pd-100	70.3	27.4	2.3
a) Due to the proximity of C and N signals, they have been reported as sum of the contributions.			

Table S5. Pd ICP determinations.

Entry	Sample	[Pd] ^a
1	GA-Pd-25	9.8
2	GA-Pd-50	12.9
3	GA-Pd-100	24.0
4	GA-Pd-200	31.4
5	GO-Pd-100	11.2
a) %wt.		

Table S6. Pd ICP determinations on the leaching tests.

Entry	Sample	[Pd] ^a	
1	GA-Pd-100	0.6	
2	GO-Pd-100	0.6	
3	GA-Pd-100	1.5 ^b	
4	GA-Pd-100	1.5°	
a) ppm. b) Leaching test of the hot-filtration experiment in point 1; c) Leaching test of the hot-filtration experiment in point 2			

EXTENDED CATALYTIC DATA

Figure S6. NMR tracking (CDCl₃, 300.1 MHz, 298 K) of the SM coupling between bromobenzene and phenylboronic acid (standard conditions) catalysed by GA-Pd-100.

Figure S7. Kinetic profiles of the SM cross-coupling reaction between bromobenzene and phenylboronic acid (standard conditions).

Figure S8. Optimization in a) temperature and b) base amount of the SM cross-coupling reaction for GA-Pd-100 (green) and GO-Pd-100 (purple) between bromobenzene and phenylboronic acid.

NMR DATA FOR ORGANIC COMPOUNDS

Figure S9. ¹H- and ¹³C-NMR spectrum of the reaction mixture of the Suzuki coupling between bromobenzene and phenylboronic acid after 1 h of reaction employing the optimized conditions. Signals of target molecule and solvent have been highlighted

Biphenyl: Prepared according to the general procedure to yield a white solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 7.73 (d, J = 8.0 Hz, 4 H), 7.55 (t, J = 7.5 Hz, 4H), 7.46 (d, J = 8.3, 2H).

4-methyl-1,1'-biphenyl: prepared according to the general procedure to yield a white solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 7.72 (m, 2H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.55 (t, J = 7.9 Hz, 2H), 7.46 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 8.2 Hz, 2H), 2.52 (s, 3H).

[1,1'-biphenyl]-4-ol: Prepared according to the general procedure to yield a white solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 7.75 (d, J = 8.2 Hz, 2 H), 7.55-7.38 (m, 5H), 6.83 (d, J = 8.3, 2H), 5.0 (bs, 1H).

4-methoxy-1,1'-biphenyl: Prepared according to the general procedure to yield a white solid. 1 H-NMR (300.1 MHz, CDCl₃, δ ppm): 7.77 (d, J = 8.2 Hz, 2 H), 7.55-7.38 (m, 5H), 7.07 (d, J = 8.1, 2H), 3.91 (s, 3H).

°

4-phenylacetophenone: prepared according to the general procedure to yield a white solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 8.05 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.61 (t, *J* = 8.3 Hz, 2H), 7.46 (m, 3H), 2.65 (s, 3H).

4-nitro-1,1'-biphenyl: prepared according to the general procedure to yield a yellow solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 8.10 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.1 Hz 2H), 7.56 – 7.25 (m, 5H).

3-phenylpyridine: prepared according to the general procedure to yield a pale-yellow oil. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 8.87 (d, *J* = 2.0 Hz, 1H), 8.72 (dd, *J* = 5.1, 1.2 Hz, 1H), 8.13 (m, 2H), 7.92 (ddd, *J* = 8.2, 2.1, 1.4 Hz, 1H), 7.43 (m, 4H), 7.30 (dt, *J* = 13.7, 6.7 Hz, 1H).

2-nitro-1,1'-biphenyl: prepared according to the general procedure to yield a pale-yellow solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 8.00 (m, 2H), 7.82 (dd, J = 6.0, 2.2 Hz, 1H), 7.70 (dd, J = 5.7, 2.1 Hz, 1H), 7.45-7.30 (m, 5H).

2,6-dimethyl-1,1'-biphenyl: prepared according to the general procedure to yield a white solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 7.75-7.40 (m, 5H), 7.32-7.05 (m, 3H), 2.51 (s, 6H).

2,4,6-trimethyl-1,1'-biphenyl: prepared according to the general procedure to yield a white solid. ¹H-NMR (300.1 MHz, CDCl₃, δ ppm): 7.77-7.35 (m, 5H), 6.94 (s, 2H), 2.44 (s, 6H), 2.10 (s, 3H).

Phenol: found as byproduct applying the general procedure. ¹H-NMR (300.1 MHz, CDCl₃, δ OH ppm): 7.28 (t, J = 7.9 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 7.9 Hz, 2H).