Organic ligand and solvent free oxidative carbonylation of

amine over Pd/TiO₂ with unprecedented activity

Shujuan Liu,^[a,b] Xingchao Dai,^[a,b] Hongli Wang,^[a] and Feng Shi^{[a]*}

^aState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, China;

E-mail: <u>fshi@licp.cas.cn</u>

^bUniversity of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, China

Table of Contents

1. Optimization of the reaction conditions	S2
2. Characterization results of catalysts	S5
3. Characterization data for products	S 6
4. NMR spectra of the products	S 8
5. References	S25

1. Optimization of the reaction conditions.

Table S1 Reaction condition optimization for oxidative carbonylation of aniline ^a

		NH ₂ Pd/M _x O _y KI CO/O ₂	\rightarrow	H H O	
		1a		1b	
Entry	Catalyst	Metal content (wt%) ^b	Yield /% ^b	TON	TOF/h ⁻¹
1	Pd/TiO ₂	0.004	54	572000	72000
2	Pd/Al_2O_3	0.002	21	222000	37000
3	Pd/SiO ₂	0.002	35	742000	92750
4	Pd/Fe ₂ O ₃	0.004	29	154000	25667

Н

Н

^a Reaction conditions: 1a (20 mmol), catalyst (50 mg), KI (1 mol %), CO (35 bar), O_2 (5 bar), solvent free, 92 ± 2 °C, 8 h, TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h; ^b Determined by isolated yield.

Table S2. Screening of the [I] for the carbonylation of aniline ^{*a*}.

	NH ₂	Pd/TiO ₂ [l]		
	1a		1b	
Entry	[I]	Yield /% ^b	TON	TOF/h ⁻¹
1	KI	54	572000	72000
2	I_2	36	382000	48000
3	NaI	27	286000	36000
4	(n-Bu) ₄ NI	11	116000	15000

^a Reaction conditions: 1a (20 mmol), catalyst (50 mg), [I] (1 mol %), CO (35 bar), O₂ (5 bar), solvent free, 92 ± 2 °C, 8 h, TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h; ^b Determined by isolated yield.

Table S3. Screening of the amount of KI for the carbonylation of aniline ^{*a*}.

	NH ₂ 1a	Pd/TiO ₂ KI	H H H O 1b	
Entry	[KI]	Yield /% ^b	TON	TOF/h ⁻¹
1	0.2 mol %	38	402000	50000
2	0.5 mol %	40	424000	53000
3	1 mol %	54	572000	72000

^a Reaction conditions: 1a (20 mmol), catalyst (50 mg), CO (35 bar), O₂ (5 bar), solvent free, 92 ± 2 °C, 8 h, TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h; ^b Determined by isolated yield.

	NH ₂	Pd/TiO ₂ KI	\rightarrow	H H O	
	1a			1b	
Entry	CO (bar)	O_2 (bar)	Yield /% ^b	TON	TOF/h ⁻¹
1	1	0.1	28	296000	37000
2	2	0.1	36	382000	48000
3	3	0.1	41	434000	54000
4	3.5	0.1	46	488000	61000
6	2.5	0.5	39	414000	52000
7	3.5	0.5	54	572000	72000

Table S4. Screening of the pressure of CO and O_2 for the carbonylation of aniline ^{*a*}.

^{*a*} Reaction conditions: 1a (20 mmol), catalyst (50 mg), KI (1 mol %), solvent free, 92 ± 2 °C, 8 h, TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h; ^{*b*} Determined by isolated yield.

Table S5. Screening of the temperature for the carbonylation of aniline ^{*a*}.

	NH ₂	Pd/TiO ₂ KI		
	1a		1b	
Entry	T (°C)	Yield /% ^b	TON	TOF/h ⁻¹
1	105(92)	10	402000	50000
2	120(108)	54	572000	72000
3	135(122)	55	584000	73000

^{*a*} Reaction conditions: 1a (20 mmol), catalyst (50 mg), KI (1 mol %), CO (35 bar), O₂ (5 bar), solvent free, 8 h, TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h; ^{*b*} Determined by isolated yield.

Table S6. Screening of the solvent for the carbonylation of aniline ^{*a*}.

	NH ₂ -	Pd/TiO ₂ KI	H H O	\bigcirc
	1a		1b	
Entry	solvent	Yield /% ^b	TON	TOF/h ⁻¹
1		55	584000	73000
2	toluene	53	564000	70000
3	NMP	50	534000	67000
4	CH ₃ CN	48	514000	64000
5	cyclohexane	41	430000	54000
6	dioxane	38	400000	50000
7	DMF	12	132000	17000
8°	CH ₃ CN	5	52000	7000

^{*a*} Reaction conditions: 1a (20 mmol), catalyst (50 mg), KI (1 mol %), CO (35 bar), O₂ (5 bar), solvent (3 mL), 122 \pm 2 °C, 8 h, TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h; ^{*b*} Determined by isolated yield; ^{*c*} CH₃CN (15 mL).

. .

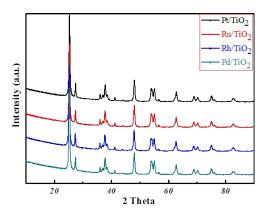
Table S7. Screening of the time for the carbonylation of aniline ^a.

	NH ₂	Pd/TiO ₂ KI CO/O ₂ 135 °C		\bigcirc
	1a		1b	
Entry	Time /h	Yield/% ^b	TON	TOF/h ⁻¹
1	1	24	254000	254000
2	2	30	322000	161000
3	4	47	500000	125000
4	6	54	578000	96000
5	8	55	584000	73000
6	24	59	624000	26000

^{*a*} Reaction conditions: 1a (20 mmol), catalyst (50 mg), KI (1 mol %), CO (35 bar), O₂ (5 bar), solvent free, 122 ± 2 °C; TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h ^{*b*} Determined by isolated yield.

2. Characterization results of catalysts

Table S8. The physicochemical properties of catalysts.


Entry	Catalyst	$\frac{SA^a}{(m^2 g^{-1})}$	APR ^a (nm)	PV^a (cm ³ g ⁻¹)
1	Pd/TiO ₂	103.0	18.8	0.97

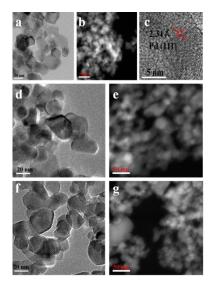
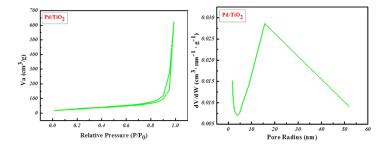
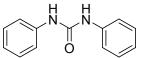
^{*a*} Determined by an IQ2 automated gas sorption analyser. SA: BET surface area; APS: average pore radius; PV: pore volume.

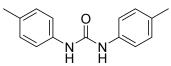
entry	Time	actual metal loading ^b	Yield/% ^c	TON	TOF/h ⁻¹
1	1	0.002 wt %	85	450000	225000
2	2	0.002 wt %	84	444000	222000
3	3	0.002 wt %	87	460000	250000

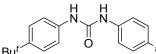
Reaction conditions: benzylamine (5 mmol), 0.004 wt% Pd/TiO₂ (35 mg), CO (35 bar), O₂ (5 bar), KI (1 mol %), toluene (2 mL), 122 ± 2 °C, 2 h. TON was defined as mol aniline converted per mol Pd and TOF as mol aniline converted per mol Pd per h; ^{*b*} Determined by ICP-AES; ^{*c*} Determined by isolated yield.

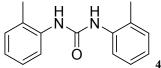
Fig. S1 XRD patterns of prepared catalysts.

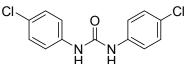
Fig. S2 TEM patterns of prepared catalysts. 0.274 wt% Pd/TiO₂ catalyst (a, b, c), 0.004 wt% Pd/TiO₂ fresh catalyst (d, e), 0.004 wt% Pd/TiO₂ fresh catalyst used three times (f, g).

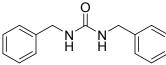




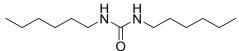

Fig. S3 BJH Desorption patterns of prepared catalysts

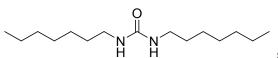

3. Characterization data for products


1b 1,3-diphenylurea¹: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a white solid; mp: 227-232°C; ¹H NMR (400 MHz, DMSO-d6) δ 8.67 (brs, 2H), 7.41-7.43 (m, 4H), 7.26-7.30 (m, 4H), 6.99-7.03 (m, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 148.9, 131.9, 121.3, 115.3, 111.9.


H H **2b 1,3-Bis(4-methylphenyl)urea**¹: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was white solid; mp: $266-267^{\circ}$ C; ¹H NMR (400 MHz, DMSO-d6) δ 8.48 (brs, 2H), 7.32 (d, 4.8 MHz, 4H), 7.07 (d, 5.2 MHz, 4H), 2.24 (s, 6H); ¹³C NMR (100 MHz, DMSO-d6) δ 152.6, 137.2, 130.5, 129.1, 118.2, 20.3.

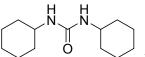

Bu^{*t*} ^{*t*}Bu **3b 1,3-bis(4-tert-butylphenyl)urea**²: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a black sticky oil; ¹H NMR (400 MHz, DMSO-d6) δ 8.53 (brs, 2H), 7.35 (d, 8.8 MHz, 4H), 7.28 (d, 8.4 MHz, 4H), 1.25 (s, 18H); ¹³C NMR (100 MHz, DMSO-d6) δ 146.8, 138.8, 126.2, 118.9, 114.6, 40.0, 32.4.


4b 1,3-dio-tolylurea³: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a black sticky oil; **1H NMR** (400 MHz, DMSO-d6) δ 8.27 (brs, 2H), 7.80-7.82 (m, 2H), 7.12-7.18 (m, 4H), 6.92-6.96 (m, 2H), 2.26 (s, 6H); ¹³C NMR (100 MHz, DMSO-d6) δ 147.3, 130.8, 127.3, 121.9, 117.0, 114.9, 18.3.


H H **5b 1,3-Bis(4-chlorophenyl)urea**¹: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a brown solid; mp: 278-280°C; ¹H NMR (400 MHz, DMSO-d6) δ 8.89 (brs, 2H), 7.48 (d, 8.0 MHz, 4H), 7.33 (d, 8.4 MHz, 4H); ¹³C NMR (100 MHz, DMSO-d6) δ 152.3, 138.5, 128.6, 125.5, 119.8.

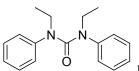
6b 1,3-Dibenzylurea¹: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was light brown solid; mp: 209-210°C; ¹H NMR (400 MHz, DMSO-d6) δ 7.24-7.31 (m, 10H), 6.44 (brs , 2H), 4.23 (s, 4H); ¹³C NMR (100 MHz, DMSO-d6) δ 158.1, 140.9, 128.2, 127.0, 126.5, 40.0.

O 7b 1,3-dihexylurea¹: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a brown sticky oil; ¹H NMR (400 MHz, DMSO-d6) δ 5.72 (brs, 2H), 3.50 (s, 2H), 2.92-3.11 (m, 3H), 1.24-1.44 (m, 16H), 0.84-0.86 (m, 6H); ¹³C NMR (100 MHz, DMSO-d6) δ 158.1, 39.2, 31.1, 30.0, 26.1, 22.1, 13.9.

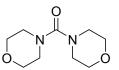

H H **8b 1,3-diheptylurea¹:** The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a yellow sticky solid; mp: 65°C; ¹H NMR (400 MHz, DMSO-d6) δ 5.73 (brs, 2H), 2.95-3.11 (m, 4H), 1.24-2.02 (m, 20H), 0.86 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 40.5, 31.7, 30.3, 29.0, 26.9, 22.5, 14.0.

$$H_{6}$$
 H_{N} H_{6} H_{6

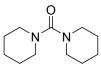
O 9b 1,3-dioctylurea⁴: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a yellow sticky solid; ¹H NMR (400 MHz, DMSO-d6) δ 8.01 (brs, 2H), 3.03-3.34 (m, 2H), 1.28 (m, 26H), 0.88-0.89 (m, 6H); ¹³C NMR (100 MHz, DMSO-d6) δ 161.7, 38.0, 32.2, 30.0, 29.6, 27.3, 23.1, 14.9.


$$H_{14}$$
 H_{N} H_{N} H_{14}

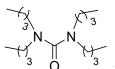
O 10b 1,3-dicetylurea: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a yellow solid; ¹H **NMR** (400 MHz, DMSO-d6) δ 1.28 (m, 56H), 0.89 (t, 4.4 MHz, 6H) ¹³C **NMR** (100 MHz, CDCl₃) δ 156.2, 40.7, 31.9, 29.7, 29.6 29.4, 22.7, 14.1.



11b 1,3-dicyclohexylurea¹: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a light grey


solid; mp: 209-210°C; ¹**HNMR** (400 MHz, CDCl₃) δ 3.46-3.41 (m, 2H) 1.10-1.95 (m, 20H) ; ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 49.1, 33.9, 25.6, 24.9.

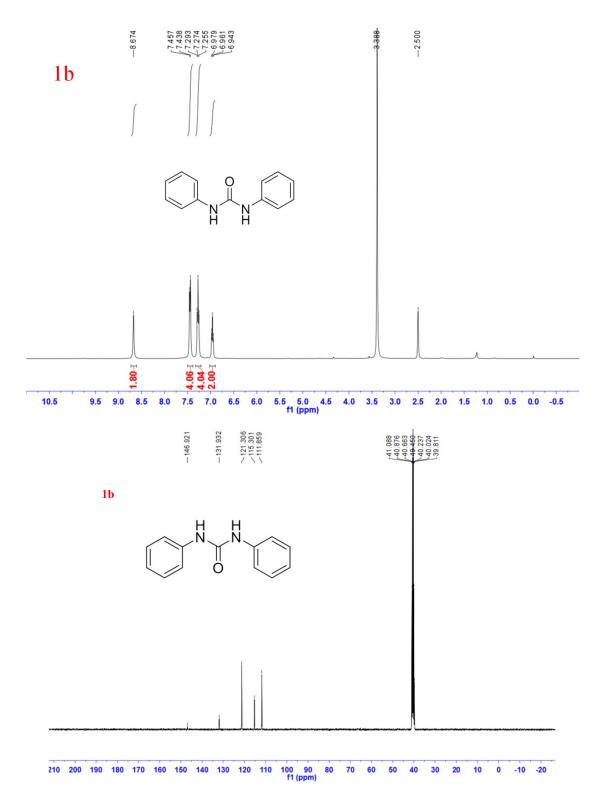
12b 1,3-diethyl-1,3-diphenylurea: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a black sticky oil; ¹H NMR (400 MHz, DMSO-d6) δ 8.45 (brs, 2H), 7.11-7.14 (m, 4H), 6.57-6.63 (m, 4H), 3.05-3.09 (m, 4H), 1.21 (t, 4.6 MHz, 6H); ¹³C NMR (100 MHz, DMSO-d6) δ 149.9, 149.3, 129.7, 116.3, 112.8, 38.2, 15.3.

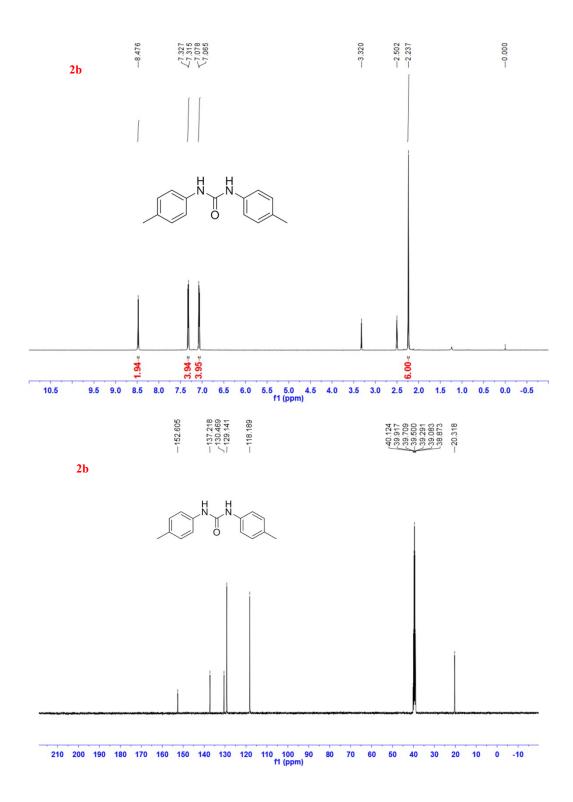

13b dimorpholinomethanone¹: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a brown sticky oil; ¹H NMR (400 MHz, DMSO-d6) δ 3.13-3.57 (m, 16H); ¹³C NMR (100 MHz, DMSO-d6) δ 162.6, 66.2, 65.9, 65.7, 46.8, 45.8, 40.6.

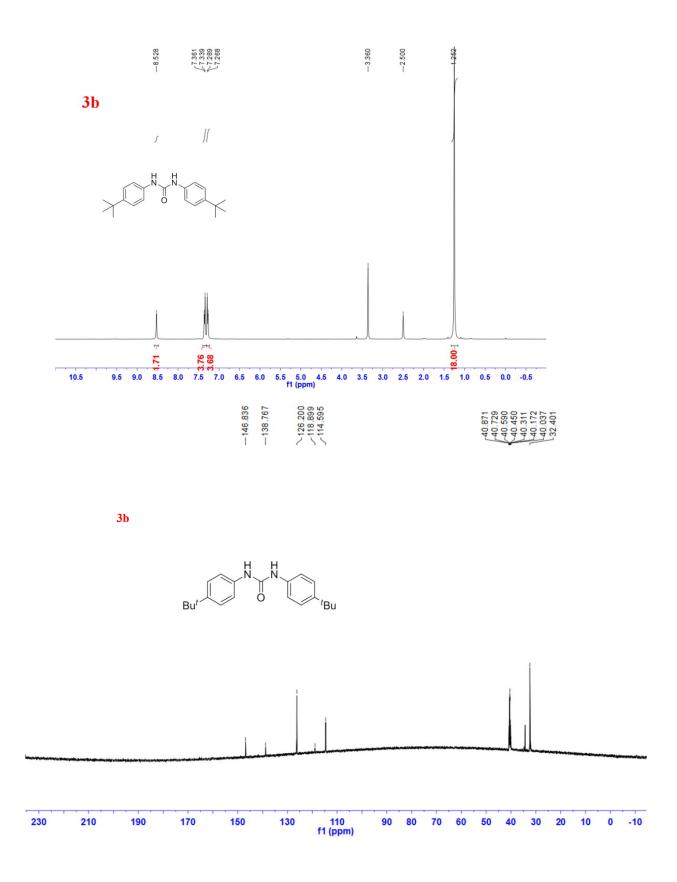
14b 4,4'-Carbonyldimorpholine⁵: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a brown sticky oil; ¹H NMR (400 MHz, DMSO-d6) δ 3.04-3.48 (m, 8H), 1.27-1.63 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 46.8, 41.4, 26.1, 25.0, 24.0.

N 15b bis(4-methylpiperazin-1-yl)methanone⁶: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a black sticky oil; ¹H NMR (400 MHz, DMSO-d6) δ 8.02 (brs, 2H), 3.36-3.39 (m, 8H), 2.17-2.32 (m, 14H); ¹³C NMR (100 MHz, DMSO-d6) δ 161.6, 56.0, 54.8, 46.6, 45.6, 35.1.

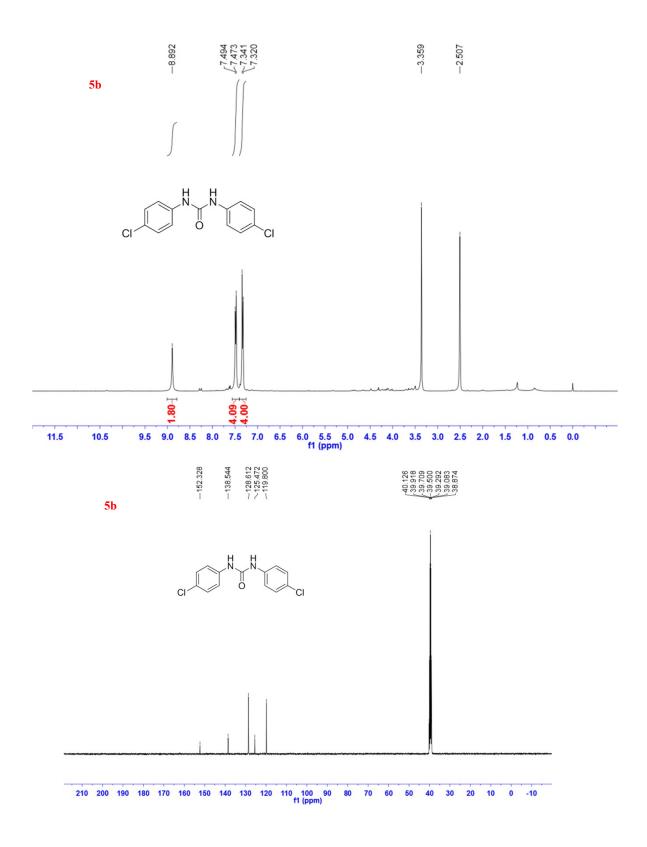
16b bis(4-ethylpiperazin-1-yl)methanone: The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a black sticky oil; ¹H NMR (400 MHz, DMSO-d6) δ 8.02 (brs, 2H), 3.37-3.40 (m, 8H), 2.30-2.36 (m, 12H), 1.00-1.02 (m, 6H); ¹³C NMR (100 MHz, DMSO-d6) δ 161.4, 53.8, 52.6, 52.5, 45.7, 12.7.

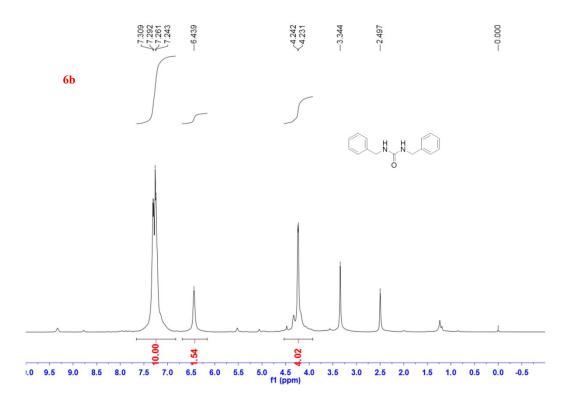


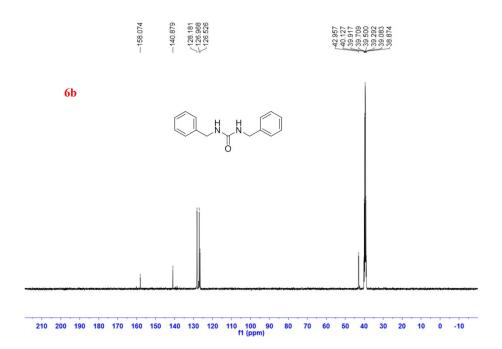

³ O ³ **17b 1,1,3,3-tetraethylurea⁷:** The title compound was prepared according to the general procedure and purified by heating to remove the reactant to give the desired product which was a black sticky oil;

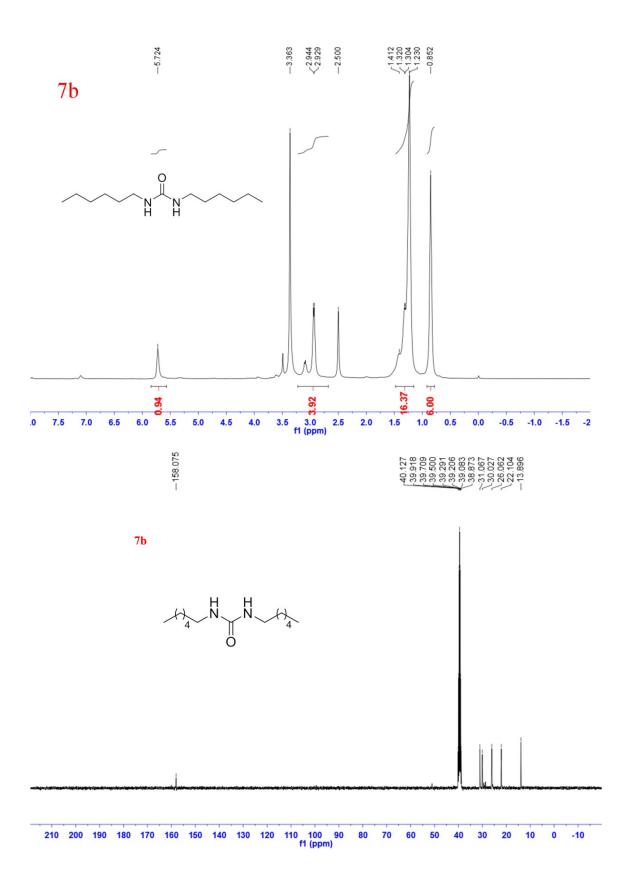

¹**H NMR** (400 MHz, DMSO-d6) δ 3.22-3.23 (m, 2H), 1.44-1.49 (m, 4H), 1.25-1.28 (m, 4H), 0.89-0.92 (m, 6H); ¹³**C NMR** (100 MHz, DMSO-d6) δ 163.2, 46.9, 29.8, 20.4, 14.4.

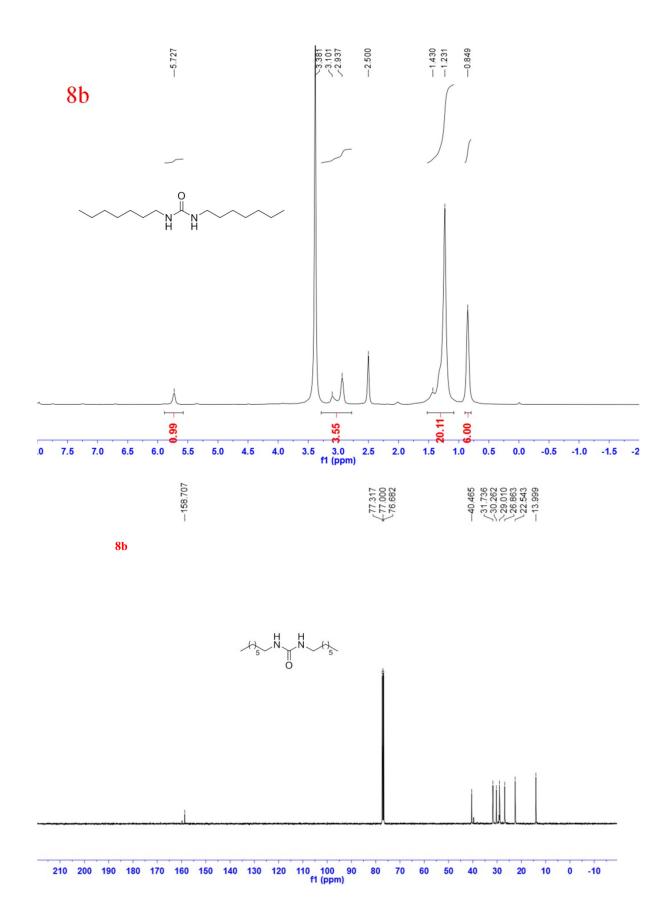
4. NMR spectra of the products

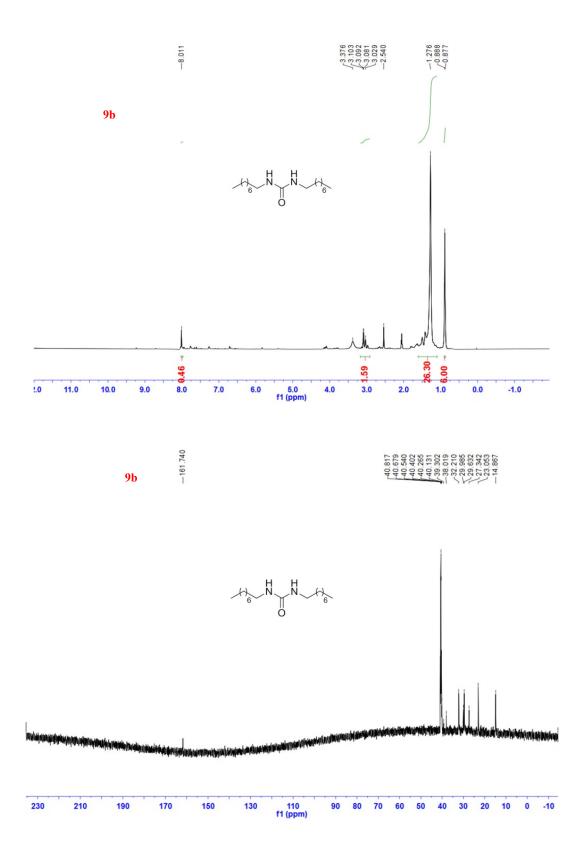

.

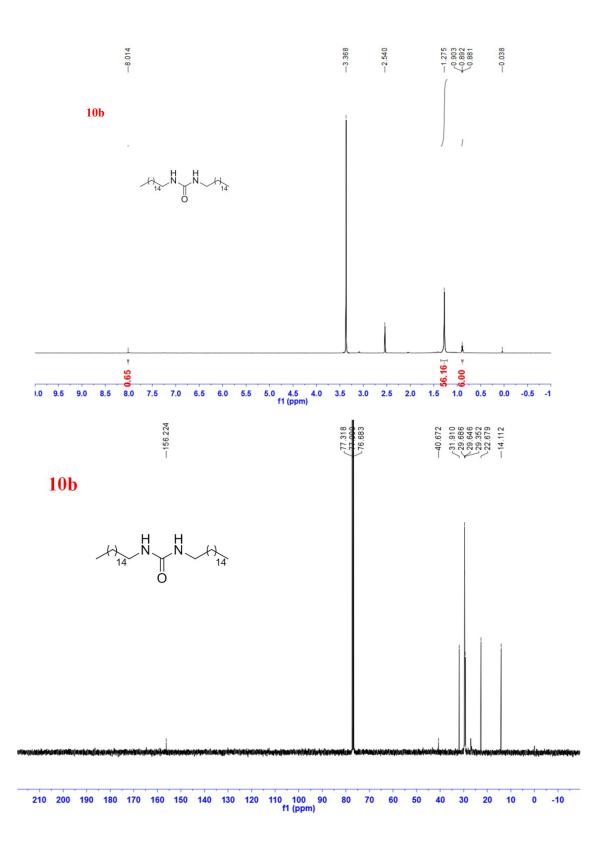


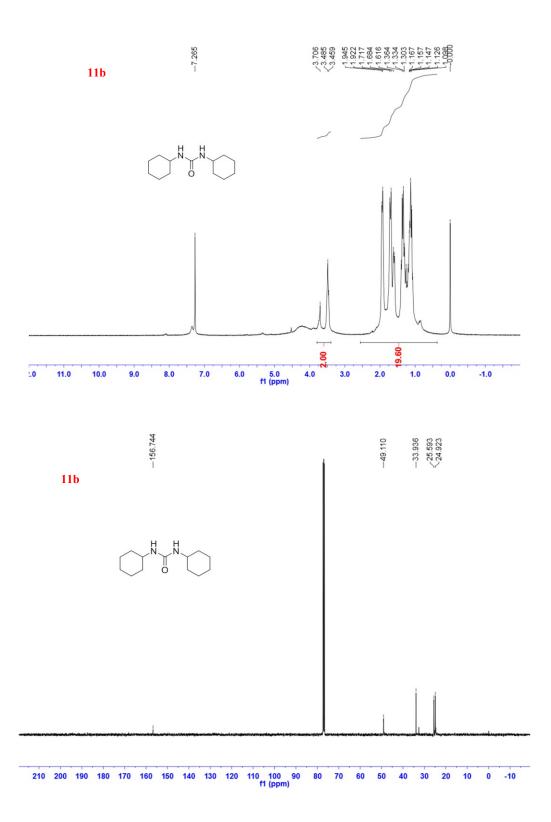


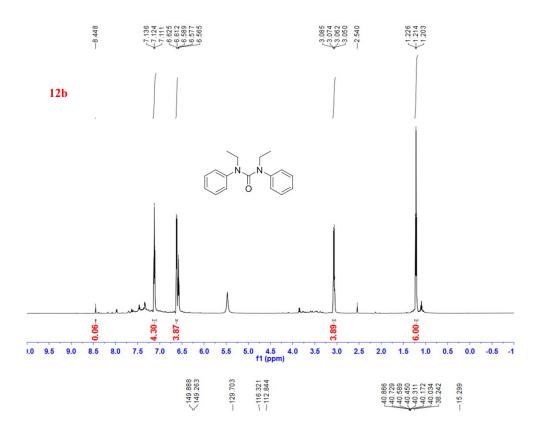


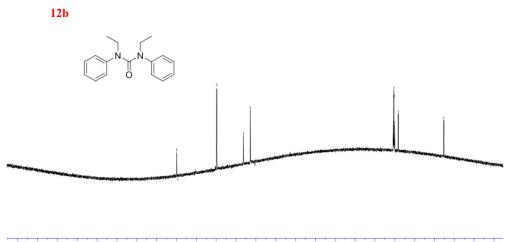


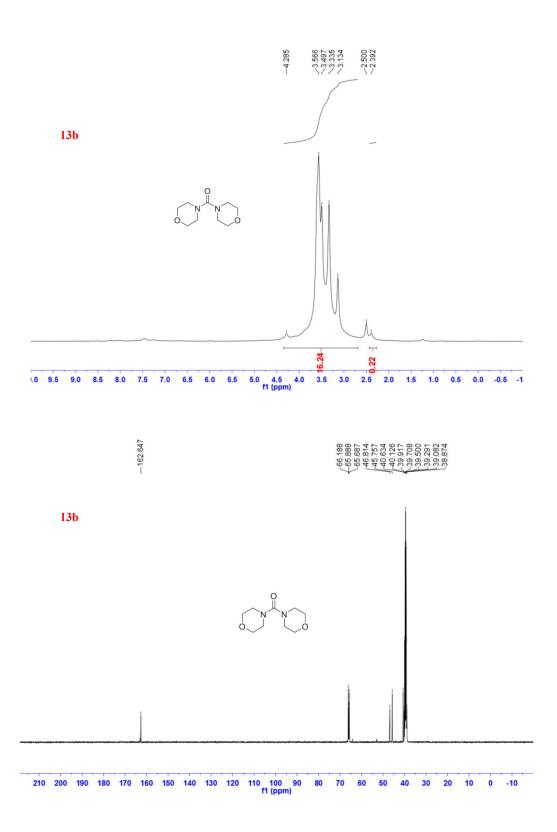


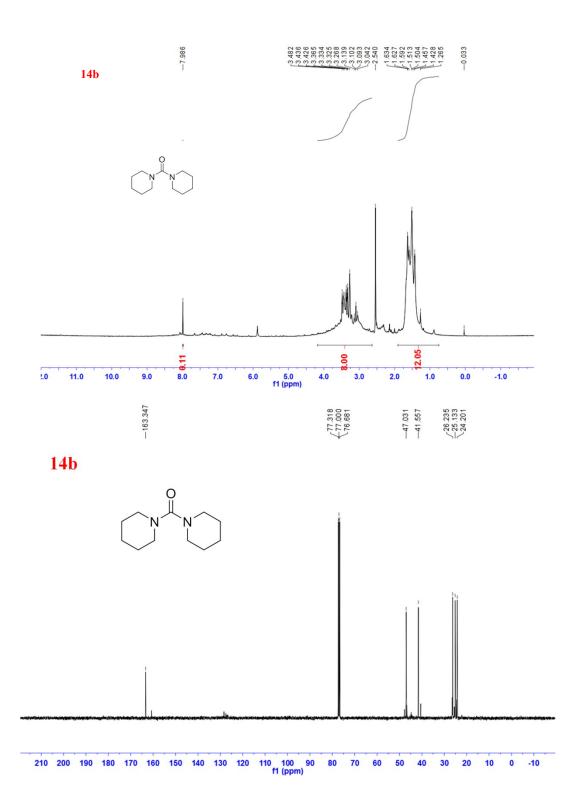


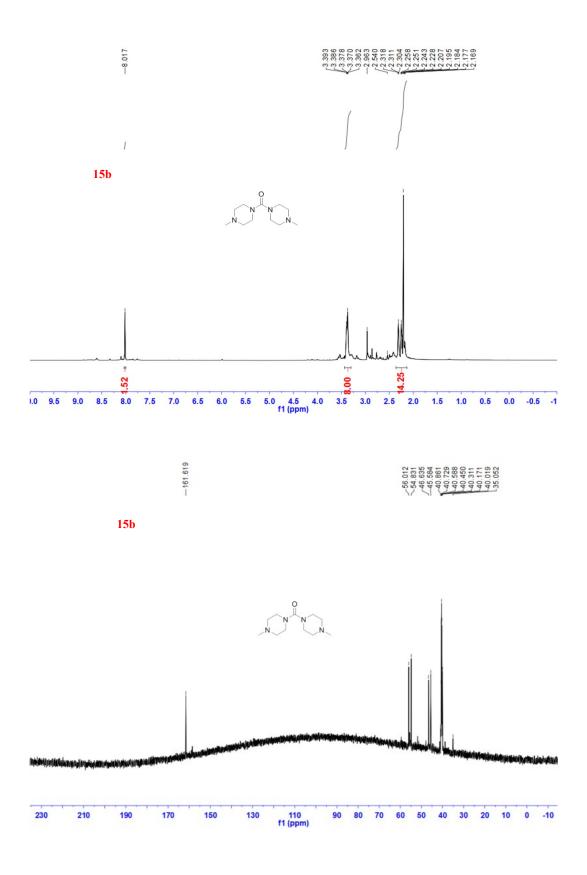


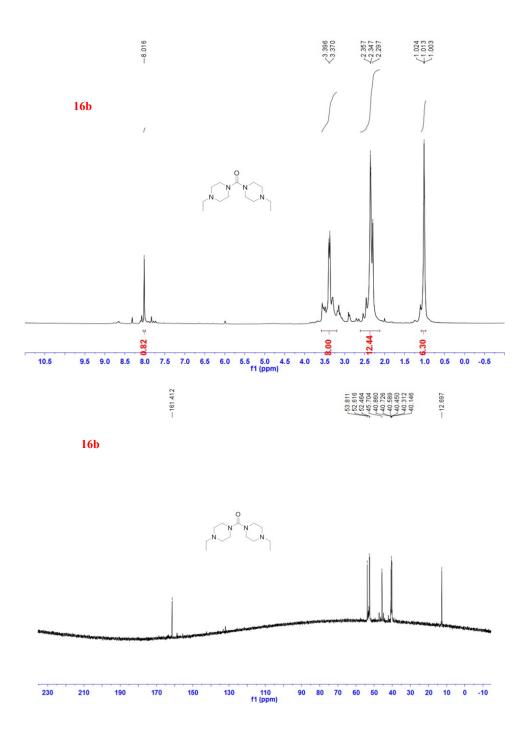


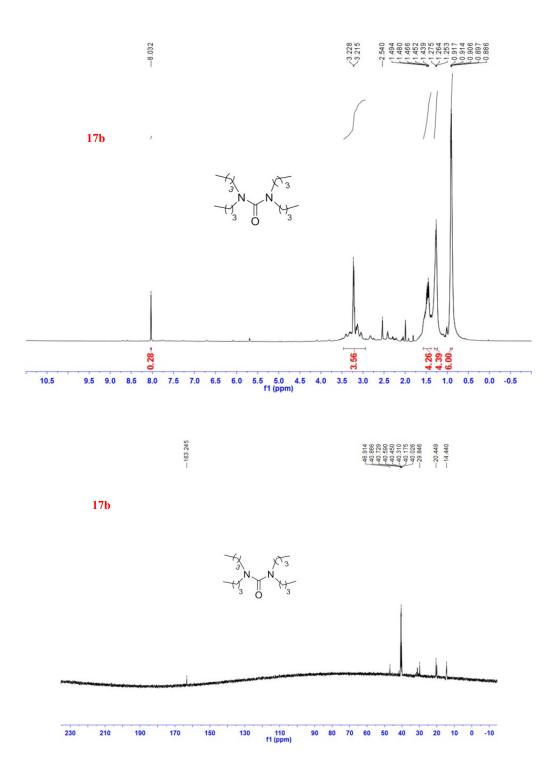











230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5. References

- 1. S. Liu, H. Wang, X. Dai, F. Shi, Green Chem., 2018, 20, 3457.
- 2. J. H. Park, J. C. Yoon, Y. K. Chung, Adv. Synth. Catal., 2009, 351, 1233.
- 3. M. Wang, J. Han, X. Si, Y. Hu, et al., *Tetrahedron Lett.*, 2018, **59**, 1614.
- 4. V. Krishnakumar, B. Chatterjee, C. Gunanathan, *Inorg. Chem.*, 2017, 56, 7278.
- 5. T. Mizuno, T. Nakai, M. Mihara, *Synthesis*, 2010, **2010**, 4251.
- 6. A. Gee, A. Dheere, S. Bongarzone, C. Taddei, et al., *Synlett*, 2015, 26, 2257.
- 7. Z.-Z. Yang, L.-N. He, Y.-N. Zhao, B. Li, et al., *Energ. Environ. Sci.*, 2011, 4, 3971.