Supporting Information

The preparation method of 2-iodomethylfuran

In a 25 mL round bottom flask furfuryl alcohol, acetonitrile, NaI and P_2O_5 were added, we obtained 80.1% 2-iodomethylfuran (Scheme 3). The prepared 2-iodomethylfuran solution was passed through 0.22 μ m filter (the solid matter was removed) into 50 ml reactor lining and heated to 100°C reaction for 30 min by passing through a 300 psi H₂/N₂ seal.

Elem	Avg	Units
Al1670	0.07574	ppm
As1890	0.2570	ppm
B 2497	0.1223	ppm
Ba4554	0.000996	ppm
Be3130	0.5299	ppm
Bi2230	0.01746	ppm
Cd2288	0.02754	ppm
Co2286	0.1926	ppm
Cr2835	0.06133	ppm
Cu3247	0.06133	ppm
Fe2599	0.7966	ppm
Ga2943	-0.01578	ppm
Ir2242	0.001183	ppm
Li6707	0.004131	ppm
Mg2795	0.2939	ppm

Table S1 Metal ion concentration table in the reaction solution

Mn2576	0.02474	ppm
Ni2216	0.8167	ppm
Pd3404	0.003764	ppm
Pt2144	0.001518	ppm
Rh3434	-0.09333	ppm
Ru2678	0.1481	ppm
Sb2068	0.05287	ppm
Sn1899	1.23	ppm
Sr4077	0.01644	ppm
Zn2138	0.1565	ppm

Table S2 Adding SnCl₂ to catalyze starch conversion

Catalyst	2-MF (%)	Furfural (%)	5-MF (%)	Total yield (%)
SnCl ₂	1.8	1.0	29.7	32.5

Reaction Condition: 100 mg starch, 2 mmol NaI, 0.18 mmol HCl, 3.5% eq SnCl₂ (4.2 mg), 2 mL H₂O, 3 mL MTHF, 500 r/min, 2 h, 300 psi H₂, 160°C.

Entry	Salt	2-MF%	Furfural%	5-MF%	Total yield%
1	KI	3.5	1.7	30.1	35.3
2	NaI	3.6	1.5	31.1	36.2
3	LiI	4.2	1.6	33.0	38.8

Table S3 Effect of different iodized salts

Reaction Condition: 100 mg starch, 2 mmol salt, 0.18 mmol HCl, 2 mL H₂O, 3 mL MTHF, 500 r/min, 2 h, 300 psi H₂, 160°C

Table S4 5-MF recovery experiment

.

Substrate	Conversion (%)	Yield (%	/ 0)
Substitute		2-MF	Furfural
5-MF	41.0	34.6	N. D.

Reaction Condition: 0.5 mmol HMF, 2 mmol NaI, 0.18 mmol HCl, 2 mL H₂O 3 mL MTHF, 500 r/min, 2 h, 300 psi H₂, 160°C.

Table S5 Optimal conditions

Entry	2-MF/%	Furfural/%	5-MF/%	Levulinic acid /%	Humins wt.%
1	5.6	2.0	38.0	22.5	45.6

Reaction Condition:100 mg starch, 2 mmol NaI, 0.18 mmol HCl, 2 mL H₂O, 6 mL MTHF, 500 r/min, 2 h, 300 psi H₂, 160°C.

Table S6 Product analysis

Entry	glucose /%	fructose	HMF/%	Levulinic acid /%	2-MF/%	Furfural/ %	5-MF/%	Humins wt.%
1 ^a	4.6	4.2	3.6	20.2	3.6	1.5	32.1	13.9
2 ^b	26.0	15.0	20.2	15.6	N. D.	N. D.	1.7	5.6

a
Reaction Condition:100 mg starch, 2 mmol NaI, 0.18 mmol HCl, 2 mL H2O, 3 mL MTHF, 500 r/min, 2 h, 300 psi H2, 160°C.
 $^{\rm b}$ 140°C.

Table S7 Preparation of 2-iodomethylfuran

	OH Acetoniti rt/ai	rile/Nal/P ₂ O ₅
	Conversion 100 %	Yield 80.1 %
Substrate	Conversion (%)	2-iodomethylfuran (%)
Furfuryl alcohol	100	80.1

Reaction Condition: 1.0 mmol furfuryl alcohol, 2 mmol NaI, 1.5 mmol P₂O₅, 5 mL acetonitrile, 1500 r/min, 30 min, rt.

Table S8 Starch amplification experiment

Entry	2-MF (%)	Furfural (%)	5-MF (%)	Total yield (%)
1	1.5	1.6	31.3	34.4

Reaction Condition: 1 g starch, 20 mmol NaI, 1.8 mmol HCl, 10 mL H₂O, 15 mL MTHF, 500 r/min, 3 h, 300 psi H₂, 160°C.

Entry	Metal salt	2-MF%	Furfural%	5-MF%	Total yield%
1	/	3.4	1.2	33.5	38.1
2	PdCl ₂	4.0	0.7	33.1	37.8
3	RhCl ₃	4.3	1.0	34.1	39.4

Reaction Condition: 100 mg starch, 2 mmol NaI, 0.18 mmol HCl, 2 mL H₂O, 3 mL MTHF, 500 r/min, 2 h, 300 psi H₂, 160°C. 1.8 % eq RhCl₃· $3H_2O$ (2.6 mg), 2.0 % eq PdCl₂ (1.9 mg).

Both THF, MTHF, and 1,4-dioxane contain trace amounts of butylated hydroxytoluene (BHT) and may interfere with experimental results. The results were the same using the solvent after re-distilled under the standard condition as shown in entries 1, 2, &3. Then we reduced the reaction time to 0.5 hours, and re-distilled MTHF as a solvent showed a better result as shown in entries 4 and 5. Thus BHT present indeed has an effect on the initial reaction rate, which proves that it is indeed a radical reaction.

Entry	Solvent	2-MF%	Furfural%	5-MF%	Total yield%
1	MTHF	2.8	1.0	30.5	34.3
2	1,4-dioxane	1.3	N. D.	30.7	32.0
3	THF	2.7	N. D.	28.3	31.0
4	0.5 h MTHF	3.9	N. D.	18.6	22.5
5	0.5 h un-distilling MTHF	3.7	N. D.	9.9	13.6

Reaction Condition: 100 mg starch, 2 mmol NaI, 0.18 mmol HCl (0.015 mL), 2 mL H₂O, 3 mL redistilling Solvent, 500 r/min, 2 h, 300 psi H₂, 160°C

Fig. S1 Detecting the iodine content in the reaction solution. 1. Organic phase. 2. Organic phase and starch potassium iodide. 3. aqueous phase 4. aqueous phase and starch potassium iodide. 5. Water, I_2 and starch potassium iodide. 6. MTHF, I_2 and starch potassium iodide.

First, different concentrations of starch solution was prepared with potassium iodide added. Then, the absorbance was measured with an ultraviolet-visible spectrophotometer. And the result was used to draw a standard curve of obsorbance to the starch concentration. Specific steps are as follows: Starch, or a fraction thereof (20, 40, 60, 80, 100, 120 mg), was accurately weighed and dissolved in 10 mL water. 1.00 ml of a solution of iodine (0.0025mol/L) in potassium iodide (0.0065mol/L) was added with mixing. Then the sample was put in a 1cm path length quartz cell, and he absorbance of the sample was read at 600nm using a UV/Visible spectrophotometer.

The starch content in the aqueous phase was determined under typical reaction conditions (100 mg starch, 2 mmol NaI, 0.18 mmol HCl, 2 mL H2O, 3 mL MTHF, 500 r/min, 2 h, 300 psi H2, 160°C) And the thermogravimetric curves of starch and humins were also determined. The residual starch in the aqueous phase was 0.26%, so the starch conversion rate was 99.74%.

Fig. S2 Standard absorption curve of starch-iodine solution.

Fig. S3 Starch and Humins thermogravimetric images.

Fig. S4 $C_{15}H_{23}NO_3$ (Tempo captured the 5-MF radical to form a new compound) Q-TOF graph. $C_{15}H_{23}NO_3$ hydrogenation ([$C_{15}H_{23}NO_3+H$]+) prediction quality 266.17562 under Q-TOF positive ion scan, actual measurement quality 266.17507.

Figure. S5 Continuous-wave EPR signal at typical condition. Reaction Condition: 1 mmol HMF, 4 mmol NaI, 0.36 mmol H₂SO₄, 6 mL MTHF, 60 μL DMPO, 500 rpm, 20 min, 300 psi H₂, 180°C.

Fig. S6 $C_{15}H_{23}NO_3$ (Tempo captured the 5-MF radical to form a new compound) Q-TOF fragment peak graph.

Fig. S7 5-iodomethylfuran-2-carbaldehyde GCMS graph. Ethyl acetate is GCMS washing needle solvent, chloroform by-product. At 2.1-3.5 min is the solvent MTHF peak, cut off on GCMS.

Fig. S8 5-iodomethylfuran-2-carbaldehyde GCMS fragment peak graph.