Supporting Information

Silver(I)-catalysed carboxylative cyclisation of primary propargylic amines in neat water using potassium bicarbonate as the carboxyl source: environment-friendly synthesis of Z-5-alkylidene-1,3-oxazolidin-2-ones

Jian-Feng Qin, ^a Bing Wang*^b and Guo-Qiang Lin^{a,b}

^{*a*} Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China.

^b Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.

Table of Contents	
General Information	S2
Typical procedures and spectral data	S2-12
NMR spectra of 1a-o, 2a-e, 2g-o, 3b, 3d, 3f, 3y	S13-67
Chiral HPLC data of 1a, 2a, 1k, 2k	S72-83

Melting points were measured on an SGW X-4 microscope apparatus which was uncorrected. Specific optical rotation was measured on a Rudolph AUTOPOL IV polarimeter. All reagents and solvents are commercially available and were used as purchased, without further purification. Mass spectra were measured on an LTQ Orbitrap XL type high resolution mass spectrometer (EI ion source) and an 6500-Qtrap liquid chromatograph-mass spectrometer (ESI ion source). ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Advanced III HD 400. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad).

Typical Procedure for the Preparation of Propargylic amine 1: To a cooled (-78 °C) solution of *N*-sulfinylimine (1.0 mmol) in CH₂Cl₂ (5 mL) under Ar was added dropwise a freshly prepared ethereal solution of alkynyl Grignard reagent (2–3 mmol), and the solution was stirred at the same temperature for 2 h, then gradually warmed to rt and stirred overnight. The reaction was quenched by sat. aq NH₄Cl, extracted with EtOAc, and the combined organic phase was washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography eluted with EtOAc/PE. The pure product was dissolved in a 2M HCl/MeOH solution and stirred at room temperature for 1 h, the solvent was removed under vacuo and the residue was triturated with EtOAc to afford propargylic amine hydrochloride as a white solid after filtration. In some cases the salt has an appreciable solubility in EtOAc, it was extracted into water, the aqueous phase was basified with sat. NaHCO₃ and extracted with EtOAc for three times. Free propargylic amine was isolated as colorless oil after concentration.

1a: White solid (89%), M.P.: 156 – 157 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.23 (s, 3H), 7.72 (d, *J* = 7.8 Hz, 2H), 7.51 – 7.42(m, 8H), 5.67 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 135.4, 132.0, 129.9, 129.7, 129.3, 128.6, 121.4, 114.9, 87.7, 85.2, 45.8; HR-MS (ESI⁺): *m/z* calcd for C₁₅H₁₃N [M + H]⁺ 208.1126, found 208.1126.

1b: White solid (87%), M.P.: 171 – 172 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.05 (s, 3H), 7.62 – 7.59 (m, 2H), 7.36 – 7.44 (m, 3H), 5.27 (d, J = 5.2 Hz, 1H), 1.44 – 1.37 (m, 1H), 0.85 – 0.80 (m, 2H), 0.67-0.63 (m, 2H); ¹³C NMR (100 MHz, DMSO d_6) δ 135.9, 129.5, 129.1, 128.4, 92.2, 71.1, 45.5, 8.5, -0.5; $[\alpha]_D^{20}$ –28.5 (*c* 0.20, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₂H₁₃N [M + H]⁺ 172.1126, found 172.1118.

1c: colorless oil (91%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.53 (m, 2H), 7.39 – 7.27 (m, 3H), 4.78 (s, 1H), 2.27 (td, *J* = 7.0, 2.1 Hz, 2H), 1.56 – 1.43 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H); HR-MS (ESI⁺): *m*/*z* calcd for C₁₃H₁₇N [M + H]⁺ 188.1439, found 188.1438.

1d: White solid (90%), M.P.: 162 – 163 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.94 (s, 3H), 7.62 – 7.59 (m, 2H), 7.46 – 7.38 (m, 3H), 5.33 (s, 1H), 1.22 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 135.9, 129.5, 129.1, 128.5, 97.0, 74.5, 45.4, 30.8, 27.6; $[\alpha]_D^{20}$ –40.0 (*c* 0.10, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₃H₁₇N [M + H]⁺ 188.1439, found 188.1438.

1e: White solid (90%); ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.63 – 7.60 (m, 2H), 7.51 – 7.49 (m, 3H), 5.38 (s, 1H), 0.25 (s, 9H);

1f: White solid (89%), M.P.: 142 – 143 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.14 (s, 3H), 7.65 – 7.62 (m, 2H), 7.47 – 7.41 (m, 3H), 5.41 (s, 1H), 3.94 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 135.1, 129.7, 129.2, 128.5, 80.0, 79.5, 45.0; HR-MS (ESI⁺): *m/z* calcd C₉H₉N for [M + H]⁺ 132.0813, found 132.0814.

1g: colorless oil (86%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.40 (m, 2H), 7.33 – 7.30 (m, 3H), 3.83 – 3.79 (m, 1H), 3.72 – 3.66 (m, 2H), 2.07 – 1.89 (m, 4H), 1.82 – 1.74 (m, 2H); HR-MS (ESI⁺): *m/z* calcd for C₁₂H₁₅NO [M + H]⁺ 190.1232, found 190.1234.

1h: White solid (90%), M.P.: 169 – 170 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.83 (s, 3H), 7.46 – 7.38 (m, 5H), 4.27 (s, 1H), 1.88 – 1.73 (m, 2H), 1.55 – 1.42 (m, 2H), 0.92 (t, *J* = 7.36 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 131.9, 129.7, 129.3, 121.6, 86.3, 85.9, 42.7, 35.4, 18.8, 13.8; $[\alpha]_D^{20}$ +33.0 (*c* 0.20, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₂H₁₅N [M + H]⁺ 174.1283, found 174.1275.

1i: White solid (92%), M.P.: 160 – 161 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.33 (s, 3H), 7.78 – 7.74 (m, 2H), 7.57 – 7.39 (m, 7H), 5.72 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 134.44, 134.41, 132.0, 130.7, 129.9, 129.3, 129.2, 121.3, 87.9, 84.9, 45.1; $[\alpha]_D^{20}$ –6.5 (*c* 0.20, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₅H₁₂NCl [M + H]⁺ 242.0737, found 242.0731.

1*j*: White solid (89%), M.P.: 153 – 154 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.09 (s, 3H), 7.54 – 7.30 (m, 10H), 6.97 (d, *J* = 15.8 Hz, 1H), 6.45 (dd, *J* = 15.8, 6.5 Hz, 1H), 5.22 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 135.5, 135.0, 132.0, 129.9, 129.3, 129.2, 127.2, 123.0, 121.4, 87.7, 84.2, 44.1; $[\alpha]_D^{20}$ +8.0 (*c* 0.20, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₇H₁₅N [M + H]⁺ 234.1283, found 234.1271.

1k: White solid (91%), M.P.: 164 – 165 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.67 (s, 3H), 7.48 – 7.39 (m, 5H), 4.13 (d, J = 5.0 Hz, 1H), 1.09 (s, 9H); ¹³C NMR (100 MHz, DMSO- d_6) δ 131.9, 129.7, 129.3, 121.6, 87.1, 84.8, 52.4, 34.8, 26.2; $[\alpha]_D^{20}$ –12.0 (*c* 0.10, CHCl₃); HR-MS (ESI⁺): *m*/*z* calcd for C₁₃H₁₇N [M + H]⁺ 188.1439, found 188.1432.

11: colorless oil (73%); ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.88 – 1.59 (m, 7H), 1.18 (s, 3H), 1.17 – 0.97 (m, 4H), 0.10 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 114.7, 84.2, 51.9, 48.6, 27.8, 27.7, 27.4, 26.51, 26.47, 26.42, 0.7; $[\alpha]_D^{20}$ +13.0 (*c* 0.20, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₃H₂₅NSi [M + H]⁺ 224.1835, found 224.1828.

1m: colorless oil (72%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 – 7.74 (m, 2H), 7.40 – 7.28 (m, 3H), 2.56 (s, 1H), 1.71 (s, 3H); ¹³C NMR (100 MHz,

Chloroform-*d*) δ 145.5, 128.3, 127.3, 125.3, 90.4, 70.8, 51.8, 33.8; $[\alpha]_D^{20}$ –16.0 (*c* 0.20, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₀H₁₁N [M + H]⁺ 146.0970, found 146.0971.

1n: White solid (92%), M.P.: 144 – 145 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.39 (s, 3H), 7.64 (dd, J = 5.1, 1.3 Hz, 1H), 7.56 – 7.34 (m, 6H), 7.10 (dd, J = 5.1, 3.6 Hz, 1H), 6.02 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 137.7, 132.0, 130.0, 129.3, 129.1, 128.2, 127.8, 121.1, 87.0, 85.0, 41.1; $[\alpha]_D^{20}$ +5.0 (c 0.20, CHCl₃); HR-MS (ESI⁺): m/z calcd for C₁₃H₁₁NS [M + H]⁺ 214.0691, found 214.0683.

10: White solid (90%), M.P.: 186 – 187 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.02 (s, 3H), 7.70 (d, *J* = 6.8 Hz, 2H), 7.58 – 7.39 (m, 5H), 7.00 (d, *J* = 8.3 Hz, 2H), 5.66 (s, 1H), 3.80 (s, 3H).; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 135.6, 133.7, 132.3, 129.8, 129.4, 128.5, 115.0, 113.2, 88.0, 83.7, 55.8, 46.0; $[\alpha]_D^{20}$ +12.0 (*c* 0.10, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₃H₁₁NS [M + H]⁺ 274.0993, found 274.0983.

Typical Procedure for the Preparation of Z-5-alkylidene-1,3-oxazolidin-2-ones: KHCO₃ (6 mmol) and Ag₂CO₃ (0.02 mmol) were added to water (5 mL) and stirred at 50 °C, followed by dropwise addition of a solution of propargylic amine hydrochloride (1.0 mmol in 5 mL water), at a rate that no excessive emulsion was formed. The reaction was monitored by TLC. The reaction mixture was extracted with ethyl acetate, the organic phase was washed with 1 N HCl to recover the unreacted propargylic amine. The organic layer was washed with water and brine, dried over Na₂SO₄, concentrated in vacuo, and purified by flash column chromatography.

2a: White solid, M.P.: 170 – 171 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.20 (m, 10H), 5.71 (s, 1H), 5.55 (s, 1H), 5.31 (s, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.8, 148.8, 138.7, 133.2, 129.3, 129.2, 128.4, 128.3, 127.1, 127.0, 104.9, 60.6. $[\alpha]_D^{20}$ +96.5 (*c* 0.10, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₆H₁₃NO₂ [M + H]⁺ 252.1019, found 252.1018.

2b: White solid, M.P.: 165 – 166 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.32 (m, 5H), 5.70 (s, 1H), 5.38 (s, 1H), 3.92 (dd, *J* = 9.3 Hz, 1H), 1.74 – 1.67 (m, 1H), 0.80 – 0.69 (m, 2H), 0.35 – 0.22 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.3, 148.1, 139.3, 129.1, 128.9, 126.8, 109.0, 59.6, 7.8, 6.7, 6.6; $[\alpha]_D^{20}$ –52.2 (*c* 0.10, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₃H₁₃NO₂ [M + H]⁺216.1019, found 216.1020.

2c: White solid, M.P.: 106 – 107 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.32 (m, 5H), 5.87 (s, 1H), 5.37 (s, 1H), 4.42 (dt, *J* = 7.6, 2.1 Hz, 1H), 2.19 – 2.08 (m, 2H), 1.35-1.25 (m, 4H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.3, 148.5, 139.4, 129.1, 128.9, 126.8, 105.2, 59.5, 31.3, 24.6, 22.1, 13.8; $[\alpha]_D^{20}$ –15.0 (*c* 0.60, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₄H₁₇NO₂ [M + H]⁺232.1332,

found 232.1334.

2d: White solid, M.P.: 152 – 153 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.31 (m, 5H), 5.64 (s, 1H), 5.32 (s, 1H), 4.34 (d, *J* = 2.0 Hz, 1H), 1.12 (s, 9H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.2, 146.7, 139.7, 129.1, 128.9, 126.9, 115.1, 60.0, 30.2, 29.7; $[\alpha]_D^{20}$ –65.0 (*c* 0.30, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₄H₁₇NO₂ [M + H]⁺ 232.1332, found 232.1335.

2e: White solid, M.P.: 117 – 118 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.33 (m, 5H), 6.04 (s, 1H), 5.41 (t, *J* = 2.4 Hz, 1H), 4.78 (m, 1H), 4.13 (q, *J* = 2.1 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.11, 155.95, 151.7, 138.7, 129.2, 129.1, 126.7, 88.4, 59.8; $[\alpha]_D^{20}$ –16.0 (*c* 0.10, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₀H₁₉NO₂ [M + H]⁺ 176.0707, found 176.0710.

2g: White solid, M.P.: 159 – 160 °C; ¹H NMR (400 MHz, MeOD) δ 7.56 (d, J = 5.0 Hz, 2H), 7.32 (t, J = 8.0 Hz, 2H), 7.21 – 7.17 (m, 1H), 5.63 (d, J = 2.0 Hz, 1H), 4.65 – 4.63 (m, 1H), 3.63 (t, J = 6.2 Hz, 2H), 1.94 – 1.88 (m, 1 H), 1.71 – 1.78 (m, 1H), 1.70 – 1.63 (m, 2H). ¹³C NMR (100 MHz, MeOD) δ 149.4, 133.9, 127.9, 127.8, 126.2, 101.8, 61.0, 56.3, 32.4, 26.9; $[\alpha]_D^{20}$ –75.2 (*c* 0.06, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for

 $C_{13}H_{15}NO_3 [M + H]^+ 234.1125$, found 234.1127.

2h: White solid, M.P.: 134 – 135 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 7.7 Hz, 2H), 7.36 – 7.20 (m, 3H), 6.54 (s, 1H), 5.49 (s, 1H), 4.56 (t, J = 5.8 Hz, 1H), 1.70 – 1.80 (m, 2H), 1.53 – 1.43 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.5, 148.9, 133.4, 128.4, 128.3, 126.8, 102.7, 56.5, 38.5, 18.0, 13.7; $[\alpha]_D^{20}$ –43.0 (*c* 1.00, CHCl₃); HR-MS (ESI⁺): *m*/*z* calcd for C₁₃H₁₅NO₂ [M + H]⁺ 218.1176, found 218.1173.

2i: White solid, M.P.: 159 – 160 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 7.7 Hz, 2H), 7.42 – 7.20 (m, 7H), 5.92 (s, 1H), 5.54 (s, 1H), 5.28 (s, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.5, 148.3, 137.2, 132.9, 129.5, 128.5, 128.44, 128.35, 127.2, 105.2, 60.0; $[\alpha]_D^{20}$ +83.0 (*c* 0.40, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₆H₁₂NClO₂ [M + H]⁺ 286.0629, found 286.0627.

2j: White solid, M.P.: 173 - 174 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.8 Hz, 2H), 7.47 - 7.28 (m, 8 H), 6.72 (d, J = 15.6 Hz, 1H), 6.17 (q, J = 15.6 Hz, 1H), 5.59 (s, 1H), 5.54 (d, J = 2.0 Hz, 1H), 5.19 (d, J = 8.0 Hz, 1H); ¹³C NMR

(100 MHz, Chloroform-*d*) δ 155.8, 147.2, 135.2, 135.0, 133.2, 128.8, 128.7, 128.5, 128.3, 127.1, 126.8, 125.3, 104.5, 59.5; $[\alpha]_D^{20} -25.0$ (*c* 0.12, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₈H₁₅NO₂ [M + H]⁺ 278.1176, found 278.1173.

2k: White solid, M.P.: 214 – 215 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.59 (m, 2H), 7.36 – 7.27 (m, 3H), 6.41 (br, 1H), 5.57 (s, 1H), 4.12 (s, 1H), 1.04 (s, 9H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.7, 146.6, 133.3, 128.6, 128.4, 127.0, 105.8, 66.1, 35.8, 24.9; $[\alpha]_D^{20}$ –128.0 (*c* 0.18, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₄H₁₇NO₂ [M + H]⁺ 232.1338, found 232.1329.

21: colorless liquid, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.06 (br, 1H), 4.67 (s, 1H), 4.16 (s, 1H), 1.83 (m, 1H), 1.41 (s, 3H), 1.39 – 0.94 (m, 9H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.8, 156.5, 84.9, 64.4, 47.5, 26.6, 26.3, 26.1, 26.0, 25.9, 25.5; $[\alpha]_D^{20}$ –69.0 (*c* 0.60, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₁H₁₇NO₂ [M + H]⁺ 196.1338, found 196.1337.

2m: White solid, M.P.: 126 – 128 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.27 (m, 5H), 6.35 (br, 1H), 4.76 (d, *J* = 3.4 Hz, 1H), 4.23 (d, *J* = 3.2 Hz, 1H), 1.89 (s, 3H); ¹H NMR (400 MHz, Chloroform-*d*) δ 161.0, 155.4, 142.3, 128.9, 128.2, 125.0, 87.1, 63.2, 28.3; $[\alpha]_{D}^{20}$ –52.0 (*c* 0.10, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₁H₁₁NO₂

[M + H]⁺ 190.0863, found 190.0867.

2n: White solid, M.P.: 157 – 158 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.54 (m, 2H), 7.39 – 7.31 (m, 3H), 7.25-7.18 (m, 2H), 7.05 – 7.03 (m, 1H), 5.88 (d, *J* = 2.0 Hz, 1H), 5.72 (br, 1H), 5.48 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.2, 147.89, 142.0, 133.0, 128.5, 128.4, 127.2, 127.1, 127.0, 126.6, 105.2, 56.0; $[\alpha]_D^{20}$ +16.0 (*c* 0.15, CHCl₃); HR-MS (ESI⁺): *m*/*z* calcd for C₁₄H₁₁NSO₂ [M + H]⁺ 258.0589, found 258.0583.

20: White solid, M.P.: 154 – 155 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.40 (m, 7H), 6.86 (d, *J* = 8.5 Hz, 2H), 6.00 (s, 1H), 5.54 (s, 1H), 5.27 (s, 1H), 3.81 (s, 3H).; ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.6, 156.0, 147.2, 139.0, 129.7, 129.3, 129.2, 127.1, 126.0, 113.9, 104.5, 60.6, 55.3.; $[\alpha]_D^{20}$ +103.0 (*c* 0.20, CHCl₃); HR-MS (ESI⁺): *m/z* calcd for C₁₄H₁₁NSO₂ [M + H]⁺ 282.1125, found 282.1131.

Typical Procedure for Ag-catalysed C–N cleavage of propargylic amines: KHCO₃ (6 mmol), AgNO₃ (0.05 mmol) and propargylic amine (1.0 mmol) were added to 95% EtOH (5 mL) and stirred at 70 °C. The reaction was monitored by TLC. After completion, the solvent was removed in vacuo. The residue was dissolved in MTBE and washed with 1 N HCl. The organic layer was dried with Na₂SO₄, concentrated in vacuo, and purified by flash column chromatography.

3b: Yellow liquid (59%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 16.1 Hz, 1H), 7.60 – 7.58 (m, 2H), 7.43 – 7.40 (m, 3H), 6.90 (d, *J* = 16.1 Hz, 1H), 2.29 – 2.26 (m, 1H), 1.18 (dt, *J* = 6.8, 3.4 Hz, 2H), 1.00 (dt, *J* = 7.3, 3.7 Hz, 2H).

3d: Yellow liquid (61%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 15.6 Hz, 1H), 7.61 – 7.59 (m, 2H), 7.42 – 7.36 (m, 3H), 7.16 (d, *J* = 15.6 Hz, 1H), 1.26 (s, 9H)

3f: Yellow liquid (66%); ¹H NMR (400 MHz, Chloroform-*d*) 9.74 (d, *J* = 7.7 Hz, 1H), 7.61 – 7.43 (m, 6H), 6.75 (dd, *J* = 16.0, 7.7 Hz, 1H);

3y: Yellow liquid (72%); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.41 (m, 6H), 6.74 (d, *J* = 16.4 Hz, 1H), 2.41 (s, 3H).

QJF-1703-69/2

QJF-1703-90/2

(

(

No. 32, Hexiang Road, WaiGaoQiao Freetradezone, Shanghai, 200131, China Tel: 021-50460086 Fax: 021-50462321 Web: www.daicelchiraltech.cn

Column	: CHIRALPAK [®] AY-H				
Column size	: 0.46 cm I.D. ×25 cm L ×5 μm				
Injection	: 2 µl				
Mobile phase	n-Hexane/Isopropanol /Diethylamine = 90/10/0.1(v/v/v)				
Flow rate	: 1.0 ml/min				
Wave length	: UV 254 nm				
Temperature	: 35°C				
Sample solution	1.0 mg/ml in EtOH10% Hexane90%				
HPLC equipment	: Shimadzu LC 20A QA&QC-HPLC-02				
	B190635N 1-1				

Sample structure

本次分析结果仅代表来样 建议使用中性流动相溶解样品

< Chromatogram >

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	6.950	4371630	48.0400	11417.354	1.084	
2	9.258	4728354	51.9600	12190.135	1.083	7.752
Testing date:	2019-06-26	Tested by:	Feng Xiaowa	n Confirm	ned by: Wa	ng Yanlin

No. 32, Hexiang Road, WaiGaoQiao Freetradezone, Shanghai, 200131, China Tel: 021-50460086 Fax: 021-50462321 Web: www.daicelchiraltech.cn

Column	: CHIRALPAK [®] AY-H	
Column size	: 0.46 cm I.D. ×25 cm L ×5 µm	
Injection	: 2 μl	
Mobile phase	: n-Hexane/Isopropanol /Diethylamine = 90/10/0.1(v/v/v)	
Flow rate	: 1.0 ml/min	
Wave length	: UV 254 nm	
Temperature	: 35°C	
Sample solution	: 0.5 mg/ml in EtOH10% Hexane90%	
HPLC equipment	: Shimadzu LC 20A QA&QC-HPLC-02	
	B190636N 1-2	

本次分析结果仅代表来样 建议使用中性流动相溶解样品

< Chromatogram >

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	6.953	4729101	99.9726	11808.869	1.084	
2	9.277	1296	0.0274	13312.546	1.057	8.046

No. 32, Hexiang Road, WaiGaoQiao Freetradezone, Shanghai, 200131, China Tel: 021-50460086 Fax: 021-50462321 Web: www.daicelchiraltech.cn

Column	: CHIRALCEL [®] OJ-H
Column size	: 0.46 cm I.D. ×25 cm L ×5 µm
Injection	: 3 µl
Mobile phase	: n-Hexane / Ethanol = $75/25$ (v/v)
Flow rate	: 1.0 ml/min
Wave length	: UV 254 nm
Temperature	: 35°C
Sample solution	: 0.4 mg/ml in MeOH10% EtOH20% Hexane70%
HPLC equipment	: Shimadzu LC 20A QA&QC-HPLC-01
	B190631N A-1

Sample structure

本次分析结果仅代表来样 建议使用中性流动相溶解样品

< Chromatogram >

<Column Performance Report>

olution
1.098

No. 32, Hexiang Road, WaiGaoQiao Freetradezone, Shanghai, 200131, China Tel: 021-50460086 Fax: 021-50462321 Web: www.daicelehiraltech.en

Column	: CHIRALCEL [®] OJ-H
Column size	: 0.46 cm I.D. ×25 cm L ×5 μm
Injection	: 2 µl
Mobile phase	: n-Hexane / Ethanol = $75/25$ (v/v)
Flow rate	: 1.0 ml/min
Wave length	: UV 254 nm
Temperature	: 35°C
Sample solution	: 0.3 mg/ml in MeOH10% EtOH20% Hexane70%
HPLC equipment	: Shimadzu LC 20A QA&QC-HPLC-01
	B190632N A-2

本次分析结果仅代表来样 建议使用中性流动相溶解样品

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	8.727	4340493	100.0000	10268.065	1.120	

No. 32, Hexiang Road	, WaiGaoQiao Freetra	dezone, Shanghai, 200131, China
Tel: 021-50460086	Fax: 021-50462321	Web: www.daicelchiraltech.cn

Column	:	CHIRALPAK [®] AY-H
Column size	:	0.46 cm I.D. ×25 cm L ×5 μm
Injection	:	2 μ1
Mobile phase	:	n-Hexane/Isopropanol /Diethylamine = $95/5/0.1(v/v/v)$
Flow rate	:	1.0 ml/min
Wave length	:	UV 254 nm
Temperature	:	35°C
Sample solution	:	1.0 mg/ml in Mobile phase (超声)
HPLC equipment	:	Shimadzu LC 20A QA&QC-HPLC-02
		B190637N 4-1

本次分析结果仅代表来样 建议使用中性流动相溶解样品

< Chromatogram >

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	4.744	3442260	48.6124	9521.973	1.172	
2	5.378	3638780	51.3876	10490.662	1.114	3.131
Testing date:	2019-06-26	Tested by:	Feng Xiaowa	n_ Confir	ned by: <u>Wa</u>	ang Yanlin

No. 32, Hexiang Road, WaiGaoQiao Freetradezone, Shanghai, 200131, China Tel: 021-50460086 Fax: 021-50462321 Web: www.daicelchiraltech.cn

Column	:	CHIRALPAK [®] AY-H
Column size	:	0.46 cm I.D. ×25 cm L ×5 μm
Injection	:	2 µl
Mobile phase	:	n-Hexane/Isopropanol /Diethylamine = $95/5/0.1(v/v/v)$
Flow rate	:	1.0 ml/min
Wave length	:	UV 254 nm
Temperature	:	35°C
Sample solution	:	0.5 mg/ml in Mobile phase
HPLC equipment	:	Shimadzu LC 20A QA&QC-HPLC-02
		B190638N 4-2

本次分析结果仅代表来样 建议使用中性流动相溶解样品

< Chromatogram >

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	4.750	3658375	99.9107	8981.643	1.177	
2	5.333	3270	0.0893			

No. 32, Hexiang Road, WaiGaoQiao Freetradezone, Shanghai, 200131, China Tel: 021-50460086 Fax: 021-50462321 Web: www.daicelchiraltech.cn

Column	: CHIRALCEL [®] OJ-H
Column size	: 0.46 cm I.D. ×25 cm L ×5 μm
Injection	: 2 µl
Mobile phase	: n-Hexane / Ethanol = $95/5$ (v/v)
Flow rate	: 1.0 ml/min
Wave length	: UV 254 nm
Temperature	: 35°C
Sample solution	: 0.5 mg/ml in MeOH10% EtOH20% Hexane70%
HPLC equipment	: Shimadzu LC 20A QA&QC-HPLC-01
	B190633N D-1

本次分析结果仅代表来样 建议使用中性流动相溶解样品

< Chromatogram >

<Column Performance Report>

Time	Area	Area %	Plate number	Tailing	Resolution
12.960	1583604	48.0095	10214.769	1.074	
13.996	1714915	51.9905	11241.287	1.122	1.990
	Time 12.960 13.996	TimeArea12.960158360413.9961714915	Time Area Area % 12.960 1583604 48.0095 13.996 1714915 51.9905	TimeAreaArea %Plate number12.960158360448.009510214.76913.996171491551.990511241.287	TimeAreaArea %Plate numberTailing12.960158360448.009510214.7691.07413.996171491551.990511241.2871.122

No. 32, Hexiang Road, WaiGaoQiao Freetradezone, Shanghai, 200131, China Tel: 021-50460086 Fax: 021-50462321 Web: www.daicelchiraltech.en

Column	: CHIRALCEL [®] OJ-H
Column size	: 0.46 cm I.D. ×25 cm L ×5 μm
Injection	: 2 µl
Mobile phase	: n-Hexane / Ethanol = $95/5$ (v/v)
Flow rate	: 1.0 ml/min
Wave length	: UV 254 nm
Temperature	: 35°C
Sample solution	: 0.5 mg/ml in MeOH10% EtOH20% Hexane70%
HPLC equipment	: Shimadzu LC 20A QA&QC-HPLC-01
	B190634N D-2

Sample structure

本次分析结果仅代表来样 建议使用中性流动相溶解样品

< Chromatogram >

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	12.952	3901445	99.8697	10178.434	1.097	
2	14.008	5089	0.1303	3967.697		1.505

 Table S1. Summary of Chiral HPLC Analysis

compound	column	$t_{R(S)}(min)$	$t_{R(R)}(min)$	ee (%)
1 a	Chiralpak	6.95	9.26	99.94
	АҮ-Н			
2a	Chiralcel	8.73	13.75	100
	OJ-H			
1k	Chiralpak	4.74	5.38	99.82
	AY-H			
2k	Chiralcel	12.96	14.00	99.74
	OJ-H			