Supporting Information

Scale-up biopolymer-chelated fabrication of cobalt nanoparticles encapsulated in N-enriched graphene shells for biofuel upgrade with formic acid

Shenghui Zhou, Fanglin Dai, Chao Dang, Ming Wang, Detao Liu, Fachuang Lu and Haisong Qi*

Figure S1 Schematic illustration for the scale-up synthesis of Co@NG-6.

Figure S2 SEM images of unpyrolyzed Co@NG-0 precursor (a), Co/Urea precursor (b), NC-6 precursor (c).

Figure S3 SEM images of NC-6 (a), Co@NG-0 (b), Mn@NG-6 (c), Fe@NG-6 (d) and Ni@NG-6 (e)

Figure S4 HRTEM-EDX of Co@NG-6.

Figure S5 High-resolution Co 2p spectrum of Co@NG-U samples.

Figure S6 High-resolution N 1s spectrum of Co@NG-U samples.

Catalysts	$\frac{S_{BET}}{(m^2 \!\cdot\! g^{-1})^{a}}$	Pore	Average pore	А	Co			
		$(cm^3/g)^{b}$	diameter (nm) ^c	Co	N	С	0	(%) ^e
Co@NG-0	177.16	0.32	7.66	0.18	0.2	96.1	3.52	1.22
Co@NG-3	427.95	0.33	3.69	0.73	3.44	89.6	6.23	0.88
Co@NG-5	465.01	0.33	3.61	1.12	6.33	86.67	5.88	0.90
Co@NG-6	626.66	0.37	1.93	0.54	6.72	86.94	5.80	1.01
Co@NG-8	440.05	0.33	3.84	0.36	7.04	86.00	6.60	1.34
Co@NG-10	305.81	0.26	2.97	0.64	4.32	89.82	5.21	0.87

Table S1. The physical properties, compositions and elemental analysis results of various catalysts.

 $^{\mathrm{a}}$ BET surface area was obtained from N_2 adsorption isotherm.

^b Volume of pores was estimated from BJH Adsorption cumulative volume of pores.

^c Average pore diameter was estimated from the adsorption average pore diameter.

^d Determined by XPS analysis.

^e Determined by ICP-OES.

Catalysts	relative atomic percentage of N (%)				relative atomic percentage of Co (%)				
	pyridinic N	pyrrolic N	graphitic N	pyridine oxide-N	Co ⁰	Co(III)-N/O	Co(II)–N/O		
Co@NG-0	31.7	31.5	22.7	14.1	17.3	34.4	48.4		
Co@NG-3	31.1	32.6	33.0	3.2	30.9	33.7	35.4		
Co@NG-6	37.6	30.4	21.2	10.7	35.0	38.8	26.3		
Co@NG-8	33.2	41.4	25.4	0.0	27.9	39.5	32.6		
Co@NG-10	31.7	31.5	22.7	14.1	27.6	46.5	26.0		

Table S2. Ratio analysis of the peaks in XPS Spectra in Co@NG-U samples.

Figure S7 Digital photo of the Co@NG-6 suspension (120 mg was dispersed in 10 mL water).

Figure S8 Effect of reaction time on THD of vanillin. Reaction conditions: 0.5mmol vanillin in 10 mL water, 250 mg FA, 160 °C, Co@NG-6 catalyst (2.3 mol% metal).

Figure S9 XPS N 1s spectrum (e) and C 1s spectrum of Co@NG-6 before and after reaction.

Table S3. Ratio analysis of Co speciation and Raman results of fresh and recycled Co@NG-6.

Catalysts	Atomic content (%) ^a			Total Co ^a	<i>I /I</i> b	I.,/I.,b
Catalysts	Co ⁰	Co(III)–N/O	Co(II)–N/O	(at %)	1D/1G	12D/ 1G
Fresh Co@NG-6	29.9	41.8	28.3	0.54	1.02	0.77
Recycled Co@NG-6	35.3	39.4	25.3	0.39	1.02	0.68

^a Determined by XPS analysis.

^b Determined by Raman test.

Catalyst	Active components	Hydrogen source	Reaction pressure	Т (°С)	t (h)	Vanillin Conv. (%)	MPC Selec. (%)	Reference
Ru ₁ /mpg-C ₃ N ₄	Noble metal	H_2	4 MPa	160	2	100	100	1
Pd@CN _{0.132}	Noble metal	H_2	1 MPa	150	6	100	100	2
Au/CNT	Noble metal	H_2	1 Mpa	150	8	98	100	3
Cu ₃ Pd ₁ @BBA-1	Noble metal	H_2	1 MPa	140	8	99	94	4
Ru/CNTs	Noble metal	H_2	1 MPa	150	6	100	96	5
Co/N-C-600	Non-noble metal	H_2	1 MPa	150	8	99	99	6
Pd/TiO ₂ @N-C	Noble metal	НСООН	$0.5 \text{ Mpa } N_2$	150	4	99	100	7
Au-Pt/CeO2	Noble metal	НСООН	1.5 Mpa N ₂	150	4.5	99	100	8
Co@NC-700 (7.9 mol% Co)	Non-noble metal	НСООН	0.5 Mpa N ₂	180	4	96	100	9
15 wt%-Cu/AC-600	Non-noble metal	2-propanol	-	180	5	99	99.1	10
Cu/Zn ₁₅ Al ₄ Sn ₁ -LDH	Non-noble metal	2-propanol	-	180	4	98.5	99	11
Co@NG-6 (4.6 mol% Co)	Non-noble metal	НСООН	-	160	6	99	100	This work

Table S4. The comparison of catalytic performance between the Co@NG-6 and previous reported catalysts.

References:

1. Zhao, P. Hu, D, Wang, Y. Li, J. Am. Chem. Soc., 2018, 140, 11161-11164.

2. X. Xu, Y. Li, Y. Gong, P. Zhang, H. Li, Y. Wang, J. Am. Chem. Soc. 2012, 134, 16987-16990.

3. X. Yang, Y. Liang, X. Zhao, Y. Song, L. Hu, X. Wang, Z. Wang, J. Qiu, RSC Advances, 2014, 4, 31932-31936.

4. S. Chandra Shit, R. Singuru, S. Pollastri, B. Joseph, B. Srinivasa Rao, N. Lingaiah,

J. Mondal, Catal. Sci. Technol., 2018, 8, 2195-2210

5. J.L. Santos, M. Alda-Onggar, V. Fedorov, M. Peurla, K. Eränen, P. Mäki-Arvela,

M.Á. Centeno, D. Y. Murzin, Appl. Catal. A: Gen, 2018, 561, 137-149.

6. L. Jiang. P. Zhou, C. Liao, Z. Zhang, S. Jin, ChemSusChem, 2018, 11, 959-964.

7. L. Wang. B. Zhang. X. Meng. D. Su, F. Xiao, ChemSusChem, 2014, 7, 1537-1541.

8. L. Wang, J. Zhang, G. Wang, W. Zhang, C. Wang, C. Bian, F. Xiao, Chem. Commun., 2017, 53, 2681-2684.

9. H. Yang, R. Nie, W. Xia, X. Yu, D. Jin, X. Lu, D. Zhou, Q. Xia, Green Chem., 2017, 19, 5714-5722.

10. R. Fan, C. Chen, M. Han, W. Gong, H. Zhang, Y. Zhang, H. Zhao, G. Wang, Small, 2018, 14, 1801953.

11. Z. Gao, F. Liu, L. Wang, F. Luo, Appl. Surf. Sci. 2019, 480, 548-556.