Supporting Information

Cascade bio-hydroxylation and dehalogenation for one-pot enantioselective synthesis of optically active β-halohydrins from halohydrocarbons

Authors:

Hai-Bo Cui,^{*a*,†} Ling-Zhi Xie,^{*a*,†} Nan-Wei Wan,^{*a*} Qing He,^{*a*} Zhi Li,^{*b*} and Yong-Zheng Chen*,^{*a*}

Affiliations:

^a Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.

^b Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore

[†] These authors contributed equally to this work.

*Corresponding author:

Dr. Prof. Yong-Zheng Chen, E-mail: yzchen@zmu.edu.cn

Table of Contents

1.	General experimental information
2.	Strains culture and enzymes preparation1
3.	Synthesis of halohydrocarbons 1b-1f, 1h-1m1
4.	Synthesis of β -haloalcohols 2b-2m
5.	Biotransformation of 1a-1m using <i>E. coli</i> (P450 _{PL2} -4)7
6.	Cascade biotransformation of 1a-1m using E. coli (P450PL2-4) and cell-free extract
(Hh	eA10)7
7.	Table S1
8.	Table S2
9.	Table S3-S510
10.	Table S612
11.	Reference12
12.	HPLC spectra for 2a, 2c-2g, and 2i-2m
13.	¹ H NMR spectra for the synthesized 1b-1f , 1h-1m
14.	¹ H and ¹³ C NMR spectra for the synthesized 2b-2m

1. General experimental information

Column chromatography was performed on silica gel (200-400 mesh). ¹H NMR (400 MHz) chemical shifts were reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, br s= broad singlet, d = doublet, t = triplet, dd = doublet of doublets, dt =double of triplet, td = triplet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR (100 MHz) chemical shifts were reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard.

Enantiomeric excess was determined by chiral HPLC analysis which was performed on SPD-M20A equipped with Chiralcel OJ-H chiral column (4.6 mm Φ ×250 mmL), Chiralcel OD-H chiral column (4.6 mm Φ ×250 mmL) or Chiralpak AD-H chiral column (4.6 mm Φ ×250 mmL) purchased from Daicel Chemical Industries.

Isopropyl- β -D-thiogalactopyranoside (IPTG, >99%), ampicillin, streptomycin sulfate salt (98%), kanamycin sulfate (>99%) salt were purchased from Solarbio (Beijing, China). Chemicals (2-chloroethyl)benzene (1a), (2-bromoethyl)benzene (1g), 2-chloro-1-phenylethan-1-ol (2a) and (*R*)-2a were purchased from J&K Chemical (Shanghai, China). All the other biological and chemical reagents and solvents were obtained from commercial suppliers and used without further purification. Water was distilled before use.

2. Strains culture and enzymes preparation

The P450 and HheA10 enzymes were expressed in *E. coli* BL21 (DE3). The corresponding antibiotics were used in whole culture process to the final concentration: ampicillin (100 μ g/mL), kanamycin (50 μ g/mL) and streptomycin (50 μ g/mL). A single colony of each *E. coli* BL21 strain was taken from the agar plate and it was inoculated in Luria-Bertani medium and grown overnight at 37 °C, 200 rpm, for 16 h. Then, a large flask (1000 mL) containing 100 mL LB was inoculated with 5 mL of the overnight culture. The flask culture was grown overnight at 37 °C, 200 rpm, until the OD₆₀₀ up to 0.6-0.8. Then, culture was induced with IPTG (final concentration 0.1 mM) and further shaken at 200 rpm, at 28 °C, for 12-14 h. The cultures were centrifuged and harvested to obtain *E. coli* cells. The cell-free extract of HheA10 was prepared by ultrasonication of the cells suspension (30 g cdw/L) and centrifugal separation.

3. Synthesis of halohydrocarbons 1b-1f, 1h-1m

The halohydrocarbon substrates **1b-1f** and **1h-1m** were synthesized from the corresponding phenethyl alcohol derivatives. The procedure described by Pluempanupat *et al.* for chlorohydrocarbon compounds was used.¹ In a typical experiment, a 50 mL Schlenk tube was thoroughly flame-dried and put under an atmosphere of N₂, after which the following compounds were added, respectively: alcohol (1 mmol), PPh₃ (2 mmol), dry CH₂Cl₂ (2 mL), and Cl₃CCONH₂ (2 mmol). The mixture was stirred at room temperature (30 °C) under an N₂ atmosphere for 1 h. The reaction was quenched with cold water and the product was isolated by purification through silica gel column chromatography.

$$R_{ll}^{II} \xrightarrow{OH} PPh_{3}, Cl_{3}CCONH_{2} \xrightarrow{CI} R_{ll}^{II} \xrightarrow{CI}$$

The procedure described by Han *et al.* for bromohydrocarbon compounds was used.² Alcohol (2 mmol) and CBr₄ (2.2 mmol) was dissolved in CH₂Cl₂ (2 mL). After cooled to 0 °C, PPh3 (2.2 mmol) was added in portions to the mixture, then was stirred overnight at room temperature. The solvent was removed under reduced pressure and the residue was added 5 mL of petroleum ether. The precipitated white solid was filtered and washed with 20 mL of petroleum ether. The filtrate was concentrated under reduced pressure, and purified by column chromatography.

1-(2-chloroethyl)-2-methylbenzene (1b)

¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 4 H), 3.71 (t, *J* = 7.8 Hz, 2 H), 3.12 (t, *J* = 7.8 Hz, 2 H), 2.38 (s, 3 H).

1-(2-chloroethyl)-3-methylbenzene (1c)

CI

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 7.5 Hz, 1 H), 7.14–7.01 (m, 3 H), 3.73 (dd, J₁= 7.8, J₂=7.3 Hz, 2 H), 3.06 (t, J = 7.5 Hz, 2 H), 2.37 (s, 3 H).

1-(2-chloroethyl)-4-methylbenzene (1d)

¹H NMR (400 MHz, CDCl₃) δ 7.23–7.13 (m, 4 H), 3.60 (td, *J*₁= 7.8, *J*₂= 2.7 Hz, 2 H), 3.19 (dd, *J*₁ = 10.5, *J*₂=4.8 Hz, 2 H), 2.40 (s, 3 H).

1-(2-chloroethyl)-4-fluorobenzene (1e)

F⁻¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.14 (m, 2 H), 7.01 (m, 2 H), 3.70 (m, 2 H), 3.04 (t, *J* = 7.1 Hz, 2 H).

1-bromo-3-(2-chloroethyl)benzene (1f)

Cl Br ¹H NMR (400 MHz, CDCl₃) δ 7.40 (m, 2 H), 7.23–7.13 (m, 2 H), 3.71 (t, J = 7.2 Hz, 2 H), 3.04 (t, J = 7.2 Hz, 2 H).

1-(2-bromoethyl)-2-methylbenzene (1h)

Br

Br

¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 4 H), 3.54 (t, *J* = 8.0 Hz, 2 H), 3.20 (t, *J* = 8.0 Hz, 2 H), 2.36 (s, 3 H).

1-(2-bromoethyl)-3-methylbenzene (1i)

¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.5 Hz, 1 H), 7.10 (d, *J* = 7.5 Hz, 1 H), 7.03 (d, *J* = 8.6 Hz, 2 H), 3.58 (t, *J* = 7.7 Hz, 2 H), 3.15 (t, *J* = 7.7 Hz, 2H), 2.37 (s, 3 H).

1-(2-bromoethyl)-4-methylbenzene (1j)

¹H NMR (400 MHz, CDCl₃) δ 7.23–7.07 (m, 4 H), 3.72 (t, *J* = 7.5 Hz, 2 H), 3.06 (t, *J* = 7.5 Hz, 2 H), 2.36 (s, 3 H).

1-(2-bromoethyl)-4-fluorobenzene (1k)

F ¹H NMR (400 MHz, DMSO- d_6) δ 7.32 – 7.26 (m, 2 H), 7.10 (t, J = 8.9 Hz, 2 H), 3.67 (t, J = 7.2 Hz, 2 H), 3.09 (t, J = 7.2 Hz, 2 H).

1-(2-bromoethyl)-4-chlorobenzene (11)

Br

Cl ¹H NMR (400 MHz, DMSO- d_6) δ 7.33 (m, 4 H), 3.71 (td, $J_1 = 7.0$, $J_2 = 2.3$ Hz, 2 H), 3.11 (t, J = 7.0 Hz, 2 H).

1-bromo-3-(2-bromoethyl)benzene (1m)

4. Synthesis of β-haloalcohols 2b-2m

The β -haloalcohols were prepared from the corresponding olefins following the procedure described in our previous paper.³ Chloroalcohols were synthesized and purified according to the method reported by Swamy,⁴ and bromoalcohols were synthesized and purified according to the revised method reported by Hatton.⁵

2-chloro-1-(o-tolyl)ethan-1-ol (2b)

¹H NMR (400 MHz, CDCl₃) δ 7.52–7.48 (m, 1 H), 7.25–7.19 (m, 2 H), 7.16 (d, *J* = 6.5 Hz, 1 H), 5.09 (dd, *J*₁= 9.0, *J*₂ = 3.0 Hz, 1 H), 3.68 (dd, *J*₁ = 11.3, *J*₂ = 3.1 Hz, 1 H), 3.58 (dd, *J*₁= 11.1, *J*₂= 9.3 Hz, 1 H), 2.63 (s, 1 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2 (s), 136.2 (s), 130.6 (s), 129.4 (s), 127.2 (s), 126.3 (s), 37.1 (s), 31.8 (s), 19.4 (s).

2-chloro-1-(m-tolyl)ethan-1-ol (2c)

¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 7.5 Hz, 1 H), 7.16 (dd, *J*₁ = 17.6, *J*₂ = 8.9 Hz, 3 H), 4.84 (dd, *J*₁ = 8.8, *J*₂ = 3.3 Hz, 1 H), 3.72 (dd, *J*₁ = 11.2, *J*₂ = 3.4 Hz, 1 H), 3.63 (dd, *J*₁ = 11.2, *J*₂ = 8.8 Hz, 1 H), 2.66 (s, 1H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 134.0 (s), 138.5 (s), 129.3 (s), 128.6 (s), 126.8 (s), 123.2 (s), 74.2 (s), 51.0 (s), 21.5 (s).

2-chloro-1-(p-tolyl)ethan-1-ol (2d)

¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.9 Hz, 2 H), 7.18 (d, *J* = 7.7 Hz, 2 H), 4.86 (dd, *J*₁ = 8.5, *J*₂ = 3.0 Hz, 1 H), 3.78–3.68 (m, 1 H), 3.68–3.58 (m, 1 H), 2.51 (s, 1H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4 (s), 137.1 (s), 129.4 (s), 126.1 (s), 74.0 (s), 51.0 (s), 21.3 (s).

2-chloro-1-(4-fluorophenyl)ethan-1-ol (2e)

F ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.33 (m, 2 H), 7.07 (dd, J_1 = 12.0, J_2 = 5.2 Hz, 2 H), 4.89 (dd, J_1 = 8.7, J_2 = 3.4 Hz, 1 H), 3.71 (dd, J_1 = 11.2, J_2 = 3.5 Hz, 1 H), 3.65–3.57 (m, 1 H), 2.73 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 245.0 Hz), 135.9 (d, J = 3.0 Hz), 127.8 (d, J = 8.0 Hz), 115.3 (d, J = 21.0 Hz), 73.3 (s), 50.2 (s).

1-(3-bromophenyl)-2-chloroethan-1-ol (2f)

CI

Br ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1 H), 7.44 (dd, $J_1 = 7.8$, $J_2 = 1.1$ Hz, 1 H), 7.29 (d, J = 7.7 Hz, 1 H), 7.23 (t, J = 7.6 Hz, 1 H), 4.85 (dd, $J_1 = 8.6$, $J_2 = 2.9$ Hz, 1 H), 3.75–3.67 (m, 1 H), 3.64–3.55 (m, 1 H), 2.76 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.2 (s), 131.6 (s), 130.3 (s), 129.3 (s), 124.8 (s), 122.9 (s), 73.4 (s), 50.8 (s).

2-bromo-1-phenylethan-1-ol (2g)

¹H NMR (400 MHz, CDCl₃) δ 7.41–7.30 (m, 5 H), 4.92 (dd, J_1 = 8.9, J_2 = 3.4 Hz, 1 H), 3.64 (dd, J_1 = 10.5, J_2 = 3.4 Hz, 1 H), 3.54 (dd, J_1 = 10.4, J_2 = 8.9 Hz, 1 H), 2.59 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4 (s), 128.8 (s), 128.5 (s), 126.1 (s), 73.9 (s), 40.2 (s).

2-bromo-1-(o-tolyl)ethan-1-ol (2h)

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 6.8 Hz, 1 H), 7.29–7.18 (m, 2 H), 7.15 (d, *J* = 6.8 Hz, 1 H), 5.12 (dd, *J*₁ = 9.3, *J*₂ = 2.5 Hz, 1 H), 3.57 (dd, *J*₁ = 10.6, *J*₂ = 2.8 Hz, 1 H), 3.47 (t, *J* = 10.0 Hz, 1 H), 2.42 (s, 1 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4 (s), 134.8 (s), 130.7 (s), 128.3 (s), 126.6 (s), 125.5 (s), 70.8 (s), 39.2 (s), 19.2(s).

2- bromo -1-(m-tolyl)ethan-1-ol (2i)

¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 7.4 Hz, 1 H), 7.16 (dd, *J*₁ = 15.3, *J*₂ = 8.2 Hz, 3 H), 4.86 (dd, *J*₁ = 8.9, *J*₂ = 3.0 Hz, 1 H), 3.61 (dd, *J*₁ = 10.4, *J*₂ = 3.2 Hz, 1 H), 3.52 (t, *J* = 9.7 Hz, 1H), 2.66 (s, 1 H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3 (s), 138.5 (s), 129.3 (s), 128.6 (s), 126.7 (s), 123.1 (s), 73.9 (s), 40.2 (s), 21.5 (s).

2- bromo-1-(p-tolyl)ethan-1-ol (2j)

¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.0 Hz, 2 H), 7.25 (d, J = 8.0 Hz, 2 H), 4.93 (dd, $J_1 = 8.7$, $J_2 = 3.5$ Hz, 1 H), 3.62 (ddd, $J_1 = 19.2$, $J_2 = 10.4$, $J_3 = 6.3$ Hz, 2 H), 2.82 (s, 1H), 2.42 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.2 (s), 137.5 (s), 129.3 (s), 126.0 (s), 73.7 (s), 40.1 (s), 21.2 (s).

2-bromo-1-(4-fluorophenyl)ethan-1-ol (2k)

F ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.30 (m, 2H), 7.0–7.00 (m, 2H), 4.92–4.84 (m, 1H), 3.58 (m, 1H), 3.54–3.46 (m, 1 H), 2.79 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, J = 245.0 Hz), 136.3 (d, J = 3.0 Hz), 127.7 (d, J = 8.0 Hz), 115.3 (d, J = 22.0 Hz), 72.9 (s), 39.2 (s).

2-bromo-1-(4-chlorophenyl)ethan-1-ol (2l)

¹H NMR (400 MHz, CDCl₃) δ 7.37–7.27 (m, 4 H), 4.87 (dd, J_1 =

8.6, J_2 = 3.4 Hz, 1H), 3.58 (m, 1H), 3.54 – 3.44 (m, 1 H), 2.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8 (s), 134.2 (s), 128.9 (s), 127.4 (s), 73.2 (s), 39.9 (s).

2-bromo-1-(3-bromophenyl)ethan-1-ol (2m)

Br ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.44–7.39 (m, 1 H), 7.24 (m, 2 H), 4.86 (d, *J* = 8.8 Hz, 1H), 3.59 (ddd, *J*₁ = 10.5, *J*₂ = 3.3, *J*₃ = 1.1 Hz, 1 H), 3.50–3.43 (m, 1 H), 2.72 (d, *J* = 2.4 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 142.5 (s), 131.2 (s), 130.1 (s), 128.9 (s), 124.6 (s), 122.5 (s), 72.8 (s), 39.1 (s).

5. Biotransformation of 1a-1m using E. coli (P450PL2-4)

To a 25 mL shake flask, 5 mL PBS buffer (50 mM, pH 8.5) containing 30 g cdw/L of *E. coli* (P450_{PL}2-4) cells was added. Subsequently, 15-25 uL of substrate 1 stock solution was added to a final concentration of 2 mM. The mixture was stirred at 35 °C, 200 rpm. After reaction for 12 h, the mixture was centrifuged at 8,000 g for 5 min. 3 mL supernatant was taken and extracted with 3 mL ethyl acetate. The organic phase was separated, dried on anhydrous NaSO₄, and analyzed by chiral HPLC.

6. Cascade biotransformation of 1a-1m using *E. coli* (P450PL2-4) and cell-free extract (HheA10)

To a 25 mL shake flask, 5 mL PBS buffer (50 mM, pH 8.5) containing 30 g cdw/L of *E. coli* (P450_{PL}2-4) cells was added. Subsequently, 15-25 uL ethanol stock solution of substrate 1 was added to a final concentration of 2 mM. The mixture was stirred at 35 °C, 200 rpm. After reaction for 8 h, 2 mL cell-free extract of HheA10 enzyme was added to the mixture. The mixture continued to react for 4 h (for chlorohydrocarbon substrates) or 1 h (for bromohydrocarbon substrates). Then, the mixture was centrifuged at 8,000 g for 5 min. 3 mL supernatant was taken and extracted with 3 mL ethyl acetate. The organic phase was separated, dried on anhydrous NaSO₄, and analyzed by chiral HPLC.

Recombinant strain	P450, Fdx-Fdr
<i>E. coli</i> (P450 _{PL2} -1)	pET28-P450 _{PL2} ; pCDFDuet-Fdx1-Fdr
<i>E. coli</i> (P450 _{PL2} -2)	pET28-P450 _{PL2} ; pCDFDuet-Fdx2-Fdr
<i>E. coli</i> (P450 _{PL2} -3)	pET28-P450 _{PL2} ; pCDFDuet-Fdx3-Fdr
<i>E. coli</i> (P450 _{PL2} -4)	pET28-P450 _{PL2} ; pCDFDuet-Fdx4-Fdr
<i>E. coli</i> (P450 _{PL2} -5)	pET28-P450 _{PL2} ; pCDFDuet-Fdx5-Fdr
<i>E. coli</i> (P450 _{PL7} -1)	pET28-P450 _{PL7} ; pCDFDuet-Fdx1-Fdr
<i>E. coli</i> (P450 _{PL7} -2)	pET28-P450 _{PL7} ; pCDFDuet-Fdx2-Fdr
<i>E. coli</i> (P450 _{PL7} -3)	pET28-P450 _{PL7} ; pCDFDuet-Fdx3-Fdr
<i>E. coli</i> (P450 _{PL7} -4)	pET28-P450 _{PL7} ; pCDFDuet-Fdx4-Fdr
<i>E. coli</i> (P450 _{PL7} -5)	pET28-P450 _{PL7} ; pCDFDuet-Fdx5-Fdr
E. coli (P450pyrM1)	pRSFDuet-P450pyr(N100S); pETDuet-Fdx-Fdr
E. coli (P450pyrM2)	pRSFDuet-P450pyr(N100S/F403I); pETDuet-Fdx-Fdr
E. coli (P450pyrM3)	pRSFDuet-P450pyr(N100S/F403M); pETDuet-Fdx-Fdr
E. coli (P450pyrM4)	pRSFDuet-P450pyr(N100S/T186I/M305Q); pETDuet-Fdx-Fdr
E. coli (P450pyrM5)	pRSFDuet-P450pyr(N100S/F403I/L302V); pETDuet-Fdx-Fdr
E. coli (P450pyrM6)	pRSFDuet-P450pyr(N100S/F403I/T186I/D183E); pETDuet-Fdx-Fdr
E. coli (P450pyrM7)	pRSFDuet-P450pyr(N100S/F403I/T186I/L302V/I83F);
E. coli (P450pyrM8)	pRSFDuet-P450pyr(N100S/F403I/T186I/L302V/M305Q);
E. coli (P450pyrM9)	pRSFDuet-P450pyr(N100S/F403I/T186I/L302V/T259A);
E. coli (P450pyrM10)	pRSFDuet-P450pyr(N100S/F403I/T186I/L302V/I83F/I102P);
E. coli (P450pyrM11)	pRSFDuet-P450(pyrT185K), pETDuet-Fdx-Fdr
E. coli (P450pyrM12)	pRSFDuet-P450(pyrT259A), pETDuet-Fdx-Fdr
E. coli (P450pyrM13)	pRSFDuet-P450(pyrT185V), pETDuet-Fdx-Fdr
E. coli (pET-28b)	pET-28b(+)
E. coli (pCDFDuet-1)	pCDFDuet-1
E. coli (pRSFDuet-1)	pRSFDuet-1
E. coli (pETDuet-1)	pETDuet-1

 Table S1. Information for the recombinant E. coli strains.

	H CI	<i>E. coli</i> cells (P450X)	OH CI	
	-	PBS buffer (50 mM, pH 8.0)		
	1a	30 °C, 24 h	2a	
Entra	Disastalvat	Yield (%)	ee (%)	Absolute
Entry	Blocalalyst	$2a^{b}$	2a ^b	configuration ^c
1	<i>E. coli</i> (P450 _{PL2} -1)	47.8±2.9	74.9±1.6	R
2	<i>E. coli</i> (P450 _{PL2} -2)	25.6±2.1	76.4±0.9	R
3	<i>E. coli</i> (P450 _{PL2} -3)	32.6±1.1	76.8±0.2	R
4	<i>E. coli</i> (P450 _{PL2} -4)	49.1±2.2	77.0±0.5	R
5	<i>E. coli</i> (P450 _{PL2} -5)	19.8±1.3	76.8±0.3	R
6	<i>E. coli</i> (P450 _{PL7} -1)	48.3±3.2	76.5±0.1	R
7	<i>E. coli</i> (P450 _{PL7} -2)	31.5±2.7	76.4±0.4	R
8	<i>E. coli</i> (P450 _{PL7} -3)	32.7±1.8	76.4±0.3	R
9	<i>E. coli</i> (P450 _{PL7} -4)	48.9±1.3	75.9±0.2	R
10	<i>E. coli</i> (P450 _{PL7} -5)	17.2±0.9	75.9±1.6	R
11	E. coli (P450pyr-M1)	n.d.	n.d.	n.d.
12	E. coli (P450pyr-M2)	n.d.	n.d.	n.d.
13	E. coli (P450pyr-M3)	n.d.	n.d.	n.d.
14	E. coli (P450pyr-M4)	2.8±0.1	34.5±7.3	S
15	E. coli (P450pyr-M5)	n.d.	n.d.	n.d.
16	E. coli (P450pyr-M6)	17.3±0.8	89.5±1.9	S
17	E. coli (P450pyr-M7)	n.d.	n.d.	n.d.
18	E. coli (P450pyr-M8)	n.d.	n.d.	n.d.
19	E. coli (P450pyr-M9)	8.0±1.0	57.1±4.9	S
20	E. coli (P450pyr-M10)	n.d.	n.d.	n.d.
21	E. coli (P450pyr-M11)	n.d.	n.d.	n.d.
22	E. coli (P450pyr-M12)	n.d.	n.d.	n.d.
23	E. coli (P450pyr-M13)	n.d.	n.d.	n.d.
24	<i>E. coli</i> (pET28-b)	n.d.	n.d.	n.d.
25	E. coli (pCDFDuet-1)	n.d.	n.d.	n.d.
26	E. coli (pRSFDuet-1)	n.d.	n.d.	n.d.
27	E. coli (pETDuet-1)	n.d.	n.d.	n.d.

 Table S2. Screening biocatalysts used for asymmetric hydroxylation of 1a.

^a Reactions were carried out in 5 mL PBS buffer (50 mM, pH 8.0) containing 2 mM of substrate **1a** and 10 g cdw/L of recombinant *E. coli* cells.

 $^{\rm b}$ Yield and ee values were measured with three parallel samples by chiral HPLC analysis after incubation at 30 °C for 24 h.

^c Absolute configuration was confirmed using commercial (R)-2a and (R,S)-2a.

n.d. = not determined.

	H CI E. coli cells X g PBS (50 mM 30 °C	6 (P450 _{PL2} -4) cdw/L buffer , pH 8.0) C, 24 h 2a	_CI
Entry ^a	biocatalyst loading (g cdw/L)	Yield (%) 2a ^b	ee (%) (<i>R</i>)- $2a^{b}$
1	5	33.6±0.4	76.5±0.3
2	10	40.5±1.2	77.1±0.1
3	20	49.1±0.7	77.9±0.3
4	30	61.5±2.7	84.8±0.1
5	50	54.9±5.8	84.7±0.4

Table S3. Optimization of the cell density of the *E. coli* (P450_{PL2}-4) catalyzed asymmetric hydroxylation of 1a.

^a Reactions were carried out in 5 mL PBS buffer (50 mM, pH 8.0) containing 2 mM of substrate **1a** and X g cdw/L recombinant *E. coli* (P450_{PL2}-4) cells;

^b Yield and ee values were measured with three parallel samples by chiral HPLC analysis after incubation at 30 °C for 12 h.

Table	S4.	Optimization	of	the	reaction	рН	of	the	Е.	coli	$(P450_{PL2}-4)$	catalyzed	asymmetric
hydrox	xylat	ion of 1a .											

	CI <u>E. coli cell</u> PBS t	OH buffer (50 mM, pH X) 30 °C, 24 h 2a	CI
Entry ^a	pH value	Yield (%) 2a ^b	<i>ee</i> (%) (<i>R</i>)- 2a ^b
1	7.0	39.3±2.1	93.1±1.0
2	7.5	37.0±2.2	94.9±0.3
3	8.0	48.9±3.5	93.4±0.2
4	8.5	63.1±1.0	89.1±0.2
5	9.0	55.5±1.9	91.4±0.4

^a Reactions were carried out in 5 mL PBS buffer (50 mM, pH X) containing 2 mM of substrate **1a** and 30 g cdw/L of recombinant *E. coli* (P450_{PL2}-4) cells;

^b Yield and ee values were measured with three parallel samples by chiral HPLC analysis after incubation at 30 °C for 12 h.

	H CI E. coli cells (F PBS buffer 1a X °C,	2450 _{PL2} -4) 30 g cdw/L (50 mM, pH 8.5) 250 rpm	CI 2a
Entry ^a	Reaction temperature (°C)	Yield (%) 2a ^b	ee (%) (R)-2 a^{b}
1	20	33.5±0.3	95.5±1.5
2	30	60.2±0.6	88.8±0.9
3	35	80.3±0.09	81.6±0.6
4	40	72.5±0.06	76.4 ± 0.04
5	45	46.4±0.5	74.7 ± 0.04
6	50	15.8±0.3	73.4±1.1

Table S5. Optimization of the reaction temperature of the *E. coli* (P450_{PL2}-4) catalyzed asymmetric hydroxylation of **1a**.

^a Reactions were carried out in 5 mL PBS buffer (50 mM, pH 8.5) containing 2 mM of substrate **1a** and 30 g cdw/L of recombinant *E. coli* (P450_{PL2}-4) cells;

 $^{\rm b}$ Yield and ee values were measured with three parallel samples by chiral HPLC analysis after incubation at X °C for 12 h.

	•	•
2a: X=CL R=H		2g: X=Br, R=H
26: X=CI R=2 CH	ОН	2h: X=Br, R=2-CH ₃
20: X-01, IX-2-013 2c: X-01, IX-2-013	X	2i: X=Br, R=3-CH ₃
2d: X=CI, R=3-CH	$ \mathbf{R}_{\parallel}^{\mathrm{fl}} $	2j: X=Br, R=4-CH ₃
20: X=CL R=4 E		2k: X=Br, R=4-F
26. X-CI, R-4-F	20.000	2I: X=Br, R=4-Cl
21. A-CI, R-3-BI,	28-2111	2m: X=Br, R=3-Br
		-

Table S6. Chiral HPLC methods for analysis of halohydrins 2a-2m.

Entry ^a	Halohydrin	Analysis method ^a	Standard curve ^b	Retention time (min)
1	2a	А	y=1.2924x-0.0295, R ² =0.9997	$t_{S}=12.0, t_{R}=13.0$
2	2 b	А	y=1.4855x-0.0005, R ² =0.9999	ts=11.0, t _R =12.2
3	2c	А	y=33619x-460.94, R ² =0.9996	$t_S=10.2, t_R=11.9$
4	2d	А	y=2.4973x+0.0086, R ² =0.9999	$t_s=10.2, t_R=10.9$
5	2e	В	y=0.4896x+0.0063, R ² =0.9999	$t_R=14.7, t_S=15.4$
6	2f	А	y=2.2953x+0.0116, R ² =0.9999	$t_R=12.6, t_S=15.1$
7	2g	А	y=1.8283x+0.0083, R ² =0.9999	$t_S=12.4, t_R=13.4$
8	2h	А	y=1.9742x+0.0029, R ² =0.9997	$t_R=11.4, t_S=12.9$
9	2i	А	y=2.3756x+0.0026, R ² =0.9999	$t_S=10.7, t_R=12.6$
10	2j	А	y=2.8416x+0.0573, R ² =0.9989	$t_S=10.5, t_R=11.5$
11	2k	В	y=76482x-15985, R ² =0.9998	$t_R=14.0, t_S=14.7$
12	21	С	y=1.0345x+0.0088, R ² =0.9999	$t_R=13.2, t_S=14.5$
13	2m	А	y=3.3972x-0.1156, R ² =0.9994	$t_R=13.0, t_S=15.4$

^a Analysis method: (A) OD-H column, 2-propanol:hexane = 5:95, 1 mL/min, 220 nm; (B) OJ-H column, 2-propanol:hexane = 10:90, 0.8 mL/min, 220 nm; (C) OJ-H column, 2-propanol:hexane = 10:90, 0.8 mL/min, 215 nm; (D) AD-H column, 2-propanol:hexane = 5:95, 1 mL/min, 220 nm.

^b The standard curves of **2c** and **2k** were drew using external standard method, x = the concentration of halohydrin, y = the peak area of halohydrin; The other standard curves were drew using internal standard method, x = the concentration of halohydrin, y = the ration of the peak area of halohydrin to the peak area of internal standard (2 mM phenethylol).

References

- Pluempanupat W, Chavasiri W. An efficient method for chlorination of alcohols using PPh₃/Cl₃CCONH₂. Tetrahedron letters, 2006, 47(38): 6821-6823.
- Han Y, Zheng B, Peng Y. Construction of Chiral 2-Substituted Octahydroindoles from Cyclic Ketones and Nitroolefins Bearing only One α-Substituent. Advanced Synthesis & Catalysis, 2015, 357(6): 1136-1142.
- Wan N, Tian J, Wang H, et al. Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorganic chemistry, 2018, 81: 529-535.
- 4. Swamy P, Kumar M A, Reddy M M, et al. The vicinal functionalization of olefins: a facile route to the direct synthesis of β-chlorohydrins and β-chloroethers. RSC Advances, 2014, 4(50): 26288-26294.
- Zhang X, Li J, Tian H, et al. Catalytic Asymmetric Bromination of Unfunctionalized Olefins with H₂O as a Nucleophile. Chemistry-A European Journal, 2015, 21(33): 11658-11663.

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

Synthesized by chemical method

Synthesized by cascade bio-hydroxylation and dehalogenation

	137.214 136.191 136.491 127.212 126.322		-77.160 Chloroform-d		37.060	—31.766 —19.379	
CI							
30 170 160 150	140 130 120	110 100	90 80 f1 (ppm)	70 60	50 40	30 20	37 ¹⁰ (

OH Br Cl	~138.801 ~134.196 7128.873 7127.428		
30 170 160 150	140 130 120 110 100 90 f1 (ppm)	80 70 60 50	40 30 20 57 10

4.5 f1 (ppm)

