> Supplementary Material (ESI) for Green Chemistry This journal is (c) The Royal Society of Chemistry

Supporting Information

Polyfuranic frame networks with elastomeric behaviour based on humins biorefinery byproducts

Roxana Dinu and Alice Mija* Université Côte d'Azur, Université Nice-Sophia Antipolis, Institut de Chimie de Nice, UMR CNRS 7272, 06108 Nice Cedex 02, France E-mail : Alice.Mija@unice.fr

1. Differential scanning calorimetry

|--|

	H80/P20	H70/P30	H60/P40	H50/ P50	H80/G20	H70/G30	H60/G40	H50/ G50
T _{peak} (°C) and reaction interval	203 ± 1 (115-247)	225 ± 1 (120-257)	$ \begin{array}{r} 160 \pm 1 \\ (135-173) \end{array} $ 244 (215-262)	$ \begin{array}{r} 157 \pm 1 \\ (122- \\ 178) \\ 242 \\ (190- \\ 262) \\ \end{array} $	215 ± 1 (95-255)	215 ± 1 (116-268)	221 ± 1 (115-267)	225 ± 1 (118- 266)
$\Delta_r H$	112 ± 2	111 ± 2	8 ± 1	6 ± 1	230 ± 4	301 ± 4	300 ± 4	1.45 ± 4
(J.g ⁻¹)	112 ± 2	111 ± 2	28 ± 1	50 ± 1	239 ± 4	J01 ± 4	500±4	143 ± 4

2. FT-Infrared Spectroscopy

Figure S2. FT-IR spectra of raw materials

3. Rheometry studies

Figure S3. Rheometry study of the copolymerization systems: a) 55% H- 40% PEGDE- 5% BDMA, b) 55% H- 20% PEGDE- 20% GDE- 5% BDMA, c) 55% H- 40% GDE- 5% BDMA

No	Resins	Gelling point (°C)	Start of reaction (°C)	End of reaction (°C)
1	HP40B5	98	75	125
2	HP20G20B5	92	73	120
3	HG40B5	86	65	115

Table S2. Rheological data for copolymerization of the three formulations

4. Dynamical mechanical analysis

Figure S4. DMA mechanical response of materials as compared to DSC scans showing the glass transition temperature for the copolymerized humins-based resins

Table S3. Temperatures and related storage modules for cross-link density determination

	Tan δ + 80 °C (°C)	E' at Tan δ + 80 °C (MPa)	∪ (mmol·cm⁻³)
HP40B5	110	0,7	0.07
HP20G20B5	130	4.36	0.43
HG40B5	146	5,81	0.56

Table S4. Sub-glass transitions of the humins-based copolymers

Sample	T _γ (°C) max / peak height	Τ _β (°C) max / peak height
HP40B5	-131 / 0.019	-73 / 0.03
HP20G20B5	-130 / 0.014	-71 / 0.03
	122 / 0.010	β -47 / 0.03
по4005	-133 / 0.019	β' -12 / 0.17

5. Thermal gravimetric analysis

Figure S5. Weight ratio vs temperature for the non-isothermal degradation of humins based resins conducted under inert (dash line) and oxidative atmosphere (solid line)

Tale S5.	TGA degradation	steps of the	materials
----------	-----------------	--------------	-----------

Resins	1st degradation		2nd degradation		3rd degradation	
	T _{max} peak (°C)	Mass loss (%)	T _{max} peak (°C)	Mass loss (%)	T _{max} peak (°C)	Mass loss (%)
HP40B5	379	63	566	20	910	17
HP20G20B5	359	57	566	13	812	30
HG40B5	310	55	498	14	753	31