Biocatalytic retrosynthesis approaches to D-(2,4,5-trifluorophenyl)alanine, key precursor of the antidiabetic sitagliptin

Fabio Parmeggiani,^{*,a} Arnau Rué Casamajo,^a Danilo Colombo,^b Maria Chiara Ghezzi,^b James L. Galman,^a Roberto A. Chica,^c Elisabetta Brenna,^b and Nicholas J. Turner^{*,c}

- ^a Manchester Institute of Biotechnology (MIB), School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom E-mail: nicholas.turner@manchester.ac.uk ; fabio.parmeggiani@manchester.ac.uk
- ^b Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
- ^c Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie-Curie, K1N 6N5, Ottawa, Ontario, Canada

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Table of contents	Page
Supplementary figures	S2
Supplementary tables	S3
General experimental methods	S4
Representative HPLC traces (non-chiral stationary phase)	S6
Representative HPLC traces (chiral stationary phase)	
Copies of NMR spectra	
Copies of HRMS spectra	
Calculation of the simplified E-factors (sEF)	
References	

Supplementary figures

Figure S1. Preliminary test showing the feasibility of LAAD-DAAT mediated stereoinversion in the presence of 5 M ammonia (model substrate L-phenylalanine).

Buffer	AvPAL ee (L) [%] ^a	RgPAL ee (L) [%] ^a	PbPAL ee (L) [%] ^a
NH ₃ /H ₂ SO ₄ 5 M, pH 9.6	97	97	80
NH ₃ /H ₂ SO ₄ 2.5 M, pH 9.6	93	98	58
NH ₃ /CO ₂ 5 M, pH 10.0	98	99	82
NH ₃ /CO ₂ 2.5 M, pH 10.0	96	99	63
H ₂ NCOONH ₄ 4 M, pH 9.9	98	99	86
H ₂ NCOONH ₄ 2 M, pH 9.9	61	98	84

Table S1. Enantiomeric excess values for the PAL mediated hydroamination of 6.

Expt. cond.: 50 mM **6**, 50 mg mL⁻¹ PAL whole cells, 37°C, 12 h. ^a Determined by reverse-phase HPLC on a chiral phase.

Table S2. Preliminary screening of a panel of EREDs for the reduction of **7** (94:6 *Z/E* mixture).

ERED	Conv. [%] ^a	Z/E ratio [-] ^b	ее [%] ^с
OYE1	11	21	90
OYE2	<1	24	_
OYE3	44	18	90
OYE2.6	48	6	79
YqjM	6	46	-
NemA	5	94	-
OPR1	<1	19	_
PETNR	<1	19	-
LeOPR	<1	24	-

Expt. cond.: 5 mM 7, 0.1 mg mL⁻¹ isol. ERED, 0.05 mg mL⁻¹ isol. GDH, 4.0 equiv. D-Glc, 0.1 mM NADP⁺, 5% ν/ν DMSO, 50 mM KP_i buffer, pH 7.0, 30°C, 24 h.

^a Determined by GC-MS.

 $^{\rm b}$ Z/E ratio of the unconverted **7** after the reaction, determined by GC-MS.

^c Determined by direct-phase HPLC on a chiral phase.

Conc. 7 [mM]	Biocatalysts	Conv. [%]ª
5	1 mg mL ⁻¹ OYE3 isol., 0.03 mg mL ⁻¹ GDH isol.	>99
10	1 mg mL ⁻¹ OYE3 isol., 0.03 mg mL ⁻¹ GDH isol.	>99
20	1 mg mL ⁻¹ OYE3 isol., 0.03 mg mL ⁻¹ GDH isol.	65
5	500 μL mL ⁻¹ OYE3 lysate ^b , 150 μL mL ⁻¹ GDH lysate ^c	88
5	600 μL mL ⁻¹ OYE3 lysate ^b , 200 μL mL ⁻¹ GDH lysate ^c	95
5	700 μL mL ⁻¹ OYE3 lysate ^b , 200 μL mL ⁻¹ GDH lysate ^c	97

Table S3. Additional conditions tested for the reduction of 7 with raw lysates of OYE3 and GDH.

Expt. cond.: 5-20 mM subs. 7, 4.0 equiv. D-Glc, 0.5 mM NADP⁺, 5% v/v DMSO, 50 mM KP_i buffer, pH 7.0, 30°C, 24 h.

^a Determined by GC-MS.

^b Prepared from 6.75 g cell wet weight in 30 mL lysis buffer.

^c Prepared from 8.82 g cell wet weight in 30 mL lysis buffer.

General experimental methods

Reagents and solvents

Analytical grade reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar or Fluorochem and used without further purification.

NMR spectroscopy

¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Avance 400 spectrometer (400 MHz) at 298 K. Chemical shifts are reported as δ in parts per million (ppm) and are calibrated against residual solvent signal. A water suppression method was used to obtain the ¹H NMR spectra of amino acid derivatives in D₂O (basified with a small amount of NaOH), with HDO as the residual solvent peak (4.79 ppm). NMR data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and proton integration.

HRMS

HRMS analyses were performed using an Agilent 1200 series LC system, coupled to an Agilent 6520 QTOF mass spectrometer, ESI positive mode. The sample (2 μ L) was flow-injected into 0.3 mL min⁻¹ MeCN/H₂O 1:1 + formic acid 0.1% v/v. The data was analyzed using Agilent MassHunter software.

HPLC

Reverse-phase HPLC analysis were performed on an Agilent 1200 series LC system. Conversions of **5** and **6** to **2** were determined on a non-chiral Zorbax Extend C18 column (50 mm × 4.6 mm × 3.5 μ m, Agilent), according to the following method: flow rate 1.0 mL min⁻¹; temperature: 40°C; detection wavelength 250 nm; mobile phase aq. NH₄OH 0.1 M pH 10.0 / MeOH; gradient elution 90:10 (0-1 min), 90:10-10:90 (1-18 min), 10:90 (18-21 min), 10:90-90:10 (21-23 min), 90:10 (23-30 min). Enantiomeric excess values of **2** were determined on a chiral Crownpak CR(+) column (150 mm × 4 mm × 3.5 μ m, Daicel), according to the following method: flow rate 1.0 mL min⁻¹; temperature: 25°C; detection wavelength 215 nm; mobile phase aq. HClO₄ 0.16% *w/v* / MeOH; isocratic elution 96:4. Enantiomeric excess values of **15** were determined on a LUX 5 μ m Cellulose-3 column (250 mm × 4.6 mm × 5.0 μ m, Phenomenex), according to the following method: flow rate 0.6 mL min⁻¹; temperature: 25°C; detection wavelength 215 nm; mobile phase *n*-hexane / *i*-PrOH; isocratic elution 99:1.

GC-MS

GC-MS analyses were performed on an Agilent 7980B GC 5977B MSD system equipped with a HP-5-MS column (30 m × 0.25 mm × 0.25 μ m, Agilent), according to the following temperature program: 60°C (1 min), 6°C/min, 150°C (1 min), 12°C/min, 280°C (5 min).

Strains and plasmids

Expression constructs were obtained as described previously, details and references are provided in the table below. *E. coli* DH5 α was used as a cloning host for plasmid propagation, *E. coli* BL21(DE3) as an expression host for protein production.

Enzyme	Plasmid	Source	Sequence	Ref.
DAADH	pRSF-Duet-GDH-DAADH	Corynebacterium glutamicum	UniProt P04964	[S1]
GDH	pKTS-GDH	Bacillus megaterium DSM509	GenBank D90043	[S2]
DAAT	pET11a-DAAT-T242G	Bacillus sp. YM-1	GenBank J04460.1	[S3]
LAAD	pET28a-LAAD	Proteus mirabilis	UniProt B4EZ74	[S4]
DDO	pET11a-DDO	Bos taurus	GenBank CAA64622.1	[S3]
RgPAL	pET11b-RgPAL	Rhodotorula glutinis	GenPept XP_016272209	[S4]
AvPAL	pET11b-AvPAL	Anabaena variabilis	GenPept WP_011320679	[S4]
PbPAL	pET30a-PbPAL	Planctomyces brasiliensis	GenPept WP_013629471	[S5]
OYE1	pET30a-OYE1	Saccharomyces pastorianus	UniProt Q02899	[S6]
OYE2	pET30a-OYE2	Saccharomyces cerevisiae	UniProt Q03558	[S2]
OYE3	pET30a-OYE3	Saccharomyces cerevisiae	UniProt P41816	[S2]
OYE2.6	pDJBx-OYE2.6	Scheffersomyces stipitis	UniProt A3LT82	[S6]
YqjM	pET30a-OYE1	Bacillus subtilis	UniProt P54550	[S7]
NemA	pDJBx-NemA	Escherichia coli	UniProt P77258	[S6]
LeOPR1	pDJBx-LeOPR1	Solanum lycopersicum	UniProt Q9XG54	[S6]
PETNR	pDJBx-PETNR	Enterobacter cloacae	UniProt P71278	[S7]

Transformations of chemically competent cells were performed by incubating plasmid DNA (~20 ng) with the cells (50 μ L aliquot) for 30 min on ice before heat shock (42°C, 20 s). SOC medium (1 mL) was immediately added, and the cells were incubated for 1 h at 37°C and 220 rpm. Colonies containing recombinant plasmids were selected on LB-agar plates containing the suitable antibiotic.

Cell concentrations are indicated as weight of the wet cell paste (CWW) per unit of volume of the biotransformation mixture.

Biocatalyst preparation

A single colony of *E. coli* BL21(DE3) cells transformed with the suitable plasmid was used to inoculate LB medium (8 mL) supplemented with antibiotic. The culture was grown overnight at 37°C and 220 rpm, then used to inoculate the appropriate medium (800 mL) containing the same antibiotic. This culture was incubated according to the conditions listed in the table below for growth and protein production. After the specified time, the cells were harvested by centrifugation (1,700 x *g*, 20 min, 4°C), washed with KP_i buffer (100 mM, pH 7.4) and harvested again by centrifugation (1,700 x *g*, 20 min, 4°C). The cell pellet was aliquoted and stored at -20° C. Purification of the EREDs and of the GDH was performed according to previously published procedures.^[S2,S7]

Enzyme	Plasmid	Growth conditions	Expression conditions	Ref.
DAADH+GDH	pRSF-Duet-GDH-DAADH	LB _{Kan} , 37°C, 180 rpm to OD ₆₀₀ ~0.6	50 μM IPTG 25°C, 180 rpm, 5 h,	[S1]
LAAD	pET28a-LAAD	LB _{Kan} , 37°C, 180 rpm to OD ₆₀₀ ~0.6	1 mM IPTG, 30°C, 180 rpm, 5 h,	[S4]
DAAT	pET11a-DAAT-T242G	LB _{Amp} , 37°C, 180 rpm to OD ₆₀₀ ~0.6	0.1 mM IPTG, 15°C, 180 rpm, o.n.	[S3]
DDO	pET11a-DDO	LB _{Amp} , 37°C, 180 rpm to OD ₆₀₀ ~0.6	0.1 mM IPTG, 15°C, 180 rpm, o.n.	[S3]
RgPAL AvPAL	pET11b-PAL	LB-AIM _{Amp} , 18	8°C, 180 rpm, 4 d	[S4
PbPAL	pET28b-PbPAL	LB-AIM _{Kan} , 18	°C, 180 rpm, 4 d	[S5]
OYE1 OYE2 OYE3	pET30a-ERED	LB _{Kan} , 37°C, 220 rpm to OD ₆₀₀ ~0.6	0.1 mM IPTG, 30°C, 220 rpm, 5 h	[\$2,\$6]
YqjM	pMH-YqjM	TB _{Cam} , 37°C, 220 rpm to OD ₆₀₀ ~0.6	0.1 mM IPTG, 30°C, 220 rpm, 5 h	[S7]
OYE2.6 LeOPR1	pDJBx-ERED (GST-tag)	LB _{Amp} , 37°C, 220 rpm to OD ₆₀₀ ~0.6	0.1 mM IPTG, 30°C, 220 rpm, 5 h	[S6]
PETNR NemA	pDJBx-ERED	LB _{Amp} , 37°C, 220 rpm to OD ₆₀₀ ~0.6	0.1 mM IPTG, 30°C, 220 rpm, 5 h	[S6,S7]
GDH	pKTS-GDH	LB _{Amp} , 37°C, 220 rpm to OD ₆₀₀ ~0.6	0.1 mM IPTG, 50 ng mL ⁻¹ aTet, 37°C, 220 rpm, 5 h	[S2]

Abbreviations:

LB = Luria-Bertani medium

LB-AIM = LB-based autoinduction medium, including trace metals (Formedium Ltd.)

TB = terrific broth

Amp = ampicillin (100 μ g mL⁻¹)

Kan = kanamycin (60 μ g mL⁻¹)

Cam = chloramphenicol (30 μ g mL⁻¹)

 $IPTG = isopropyl \ \beta \text{-}D\text{-}1\text{-}thiogalactopyranoside}$

aTet = anhydrotetracyclin

Representative HPLC traces (non-chiral stationary phase)

Conversion of ketoacid **5** to amino acid D-**2**

Conversion of cinnamic acid 6 to amino acid 2

<u>Representative HPLC traces (chiral stationary phase)</u>

Enantiomeric excess of amino acid ${\tt D-2}$

Enantiomeric excess of bromoester (S)-15

Copies of NMR spectra

2-Amino-3-(2,4,5-trifluorophenyl)propanoic acid (2)

-95	-100	-105	-110	-115	-120	-125	-130 f1 (ppm)	-135)	-140	-145	-150	-155	-160	-165

2-Oxo-3-(2,4,5-trifluorophenyl)propanoic acid (5)

-102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 f1 (ppm)

(2,4,5-Trifluorophenyl)methanol (10)

1-(Bromomethyl)-2,4,5-trifluorobenzene (11)

Diethyl 2-acetamido-2-(2,4,5-trifluorobenzyl)malonate (12)

(E)-3-(2,4,5-Trifluorophenyl)acrylic acid (6)

(Z)-2-Bromo-3-(2,4,5-trifluorophenyl)acrylic acid (18)

-102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 fl (ppm)

Methyl (S)-2-bromo-3-(2,4,5-trifluorophenyl)propanoate ((S)-15)

Methyl (R)-2-azido-3-(2,4,5-trifluorophenyl)propanoate ((R)-16)

Methyl (R)-2-amino-3-(2,4,5-trifluorophenyl)propanoate ((R)-17)

Copies of the HRMS spectra

2-Amino-3-(2,4,5-trifluorophenyl)propanoic acid (2)

Diethyl 2-acetamido-2-(2,4,5-trifluorobenzyl)malonate (12)

(E)-3-(2,4,5-Trifluorophenyl)acrylic acid (6)

(Z)-2-Bromo-3-(2,4,5-trifluorophenyl)acrylic acid (18)

Calculation of the simplified E-factors (sEF)

The simplified E-factors have been calculated (according to ref. S8) not taking into account water and solvents. Due to its definition, this metric should only be used for the purpose of comparison, and not to draw conclusions on the actual amount of waste produced.

In the spreadsheet below, the quantities of each chemical involved have been normalised for the isolation of 1 kg of D-2 for each route. In column "E" all the components used in each process are listed. In column "sEF" only those that contribute to the simplified E-factor are listed.

	H	L.	1.4		2.1	1.5			1.8).6	5.4				3.8				0.1	0.0							2.1
	E	, L	14	0.0	11	1.5 4	9.0	0.0	0.0 31	3.0 10	5.4 6	0.0	0	0.0	.8 (0.0	1.0	1.0	0.1	1.0 20						_	20
		~	4	8	7	4	39	39	159	23	9	320	21	109	0	219	164	164	0	54							
Reduction of 7 + FG	Chemical	NBS	phosphonate 14	THF	aldehyde 8	K2CO3	H2O	EtOAc	ERED CFE	GDH CFE	D-Glc	KPi buffer	DMSO	DMF	NaN3	H2O	EtOAc	EtOAc	Pd/C	HCI conc						-	sEF
ž	SEF	1	23	0.2		5.3		0.5	5.8	6.8		1.8	13.6	13.6	13.6												64.8
stereoi	ш	1	2.3	0.2	14.3	47.7	28.6	4.8	I37.0	6.8	I37.0	1.8	13.6	13.6	13.6												
Hydroamination of 6+	Chemical	aldehvde 8	malonic acid	piperidine	DMSO	HCI 3M	Н20	NaHCO3 10%	NH3 2.5M	PAL cells	H2O	D-Asp	LAAD cells	DAAT cells	DDO cells												SEF
	SEF	6	ì	0.2		8.5		1.1	3.8			1.1	3.4	0.2		1.9		2.9		6.8	0.8		3.1	3.1	3.1		41.1
DAAT)	ш	1	30.3	0.2	3.8	28.4	7.6	3.8	3.8	18.9	22.7	11.4	11.4	0.2	18.3	1.9	30.6	2.9	7.3	18.3	0.8	62.5	3.1	3.1	3.1		
Deracemisation of	Chemical	aldehvde 8	MeOH	NaBH4	H2O	brine	Et 20	brine	PBr3	H2O	EtOAc	NaHCO3 10%	brine	Na	EtOH	DEAM	MeOH	NaOH	H2O	HCI conc	D-Asp	KPi buffer	DAAT cells	LAAD cells	DDO cells	-	SEF
	sEF	17	i	0.2		2.1		2.1	3.5			1.0	3.1	0.2		1.8		2.7		6.3	1.6	4.2		5.8	5.8	1	41.0
DAADH	ш	17	27.4	0.2	3.4	6.9	25.7	6.9	3.5	17.2	20.6	10.3	10.3	0.2	17.1	1.8	28.6	2.7	6.8	17.1	1.6	4.2	116.0	5.8	5.8		
Deracemisation of 2(Chemical	aldehvde 8	MeOH	NaBH4	H2O	brine	Et20	brine	PBr3	H2O	EtOAc	NaHCO3 10%	brine	Na	EtOH	DEAM	MeOH	NaOH	H2O	HCI conc	NH4CI	D-Glc	Na2CO3 buffer	DAADH-GDH cells	LAAD cells	-	SEF
	SEF	14	14	1.0			1.6		1.2		12.2	12.2															30.0
	ш	1 4	1.4	1.0	8.5	33.8	14.1	2.8	1.2	243.9	12.2	12.2															
Transamination of 5	Chemical	aldehvde 8	NAcGly	NaOAc	Ac20	H20	HCI 3M	acetone	D-Asp	KPi buffer	DAAT cells	DDO cells															SEF
	SEF	1,0	13	0.9			1.4		1.5	4.0		11.2															20.7
5	ш	1 3	1.3	0.9	7.8	31.0	12.9	2.6	1.5	4.0	12.0	11.2														-	
Reductive amination of	Chemical	aldehvde 8	NAcGly	NaOAc	Ac20	H2O	HCI 3M	acetone	NH4CI	D-Glc	Na2CO3 buffer 1	DAADH-GDH cells														-	SEF

References

- [S1] F. Parmeggiani, S. T. Ahmed, M. T. Thompson, N. J. Weise, J. L. Galman, D. Gahloth, M. S. Dunstan, D. Leys, N. J. Turner, *Adv. Synth. Catal.*, 2016, **358**, 3298-3306.
- [S2] M. Bechtold, E. Brenna, C. Femmer, F. G. Gatti, S. Panke, F. Parmeggiani, A. Sacchetti, Org. Process Res. Dev., 2012, 16, 269-276.
- [S3] C. J. W. Walton, F. Parmeggiani, J. E. Barber, J. L. McCann, N. J. Turner, R. A. Chica, *ChemCatChem*, 2018, 10, 470-474.
- [S4] F. Parmeggiani, S. L. Lovelock, N. J. Weise, S. T. Ahmed, N. J. Turner, Angew. Chem., Int. Ed., 2015, 54, 4608-4611.
- [S5] N. J. Weise, S. T. Ahmed, F. Parmeggiani, J. L. Galman, M. S. Dunstan, S. J. Charnock, D. Leys, N. J. Turner, Sci. Rep., 2017, 7, 13691.
- [S6] M. Crotti, F. Parmeggiani, E. E. Ferrandi, F. G. Gatti, A. Sacchetti, S. Riva, E. Brenna, D. Monti, Front. Bioeng. Biotechnol., 2019, 7, 89.
- [S7] E. Brenna, M. Crotti, F. G. Gatti, D. Monti, F. Parmeggiani, A. Pugliese, *Molecules*, 2017, 22, 1591.
- [S8] F. Roschangar, R. A. Sheldon, C. H. Senayanake, *Green Chem.*, 2015, 17, 752-768.