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Detailed analysis in the types of compounds

The collected dataset of compounds spans a wide class of organic molecular structures 

including aliphatic and aromatic hydrocarbons, alcohols and phenols, heterocyclic 

compounds, amines, acids, ketones, esters, aldehydes, ethers and so on. In order to 

demonstrate the chemical diversity of the dataset, the corresponding counts of different 

types were detailed in Table S1, and their distributions in the training, test and external sets 

were also provided.

Table S1 The detailed analysis for the types of compounds in the entire dataset and three disjoint subsets.

Training set Test set External set Entire dataset

Aliphatic and aromatic hydrocarbons 731 80 114 925

Alcohols and phenols 523 67 67 657

Heterocyclic compounds 2074 275 243 2592

Amines 1596 188 192 1976

Acids 988 104 110 1202

Ketones 782 100 116 998

Esters 521 64 61 646

Aldehydes 49 7 11 67

Ethers 134 21 13 168

Others 1136 161 140 1437

Total 8534 1067 1067 10668

Since the subsets were divided with a random selection routine, the proportions of 

different types of compounds in each subset approximate the corresponding proportions for 

the compounds of the subset in the entire dataset.
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Frequencies of compounds presenting molecular features

The detailed count for the number of compounds in the training set presenting each 

molecular feature is shown in Table S2. Such information is important for the future use of 

the predictive model to estimate the level of confidence on individual predictions 

considering the number of training compounds associated to each molecular feature.

Table S2 The frequencies of compounds presenting each molecular feature in model training.

Molecular feature Frequency Molecular feature Frequency Molecular feature Frequency

[C] 5628 -[C] 6303 =[C] 381

#[C] 46 [C|r] 190 -[C|r] 2211

=[C|r] 526 [C*] 75 -[C*] 93

[C|r*] 5 -[C|r*] 638 [C**] 279

-[C**] 130 [C|r**] 22 -[C|r**] 618

[c|r] 541 -[c|r] 6201 =[c|r] 9

:[c|r] 6950 /=\[C] 102 /=/[C] 176

/=\[C|r] 15 /=/[C|r] 20 [O] 5

-[O] 4466 =[O] 5753 -[O|r] 677

[o|r] 3 :[o|r] 300 -[O-] 819

-[N] 3920 =[N] 153 #[N] 306

-[N|r] 1232 =[N|r] 217 -[n|r] 597

:[n|r] 2238 -[N+] 753 =[N+] 17

#[N+] 3 =[N-] 8 =[N+|r] 1

-[n+|r] 2 :[n+|r] 60 /=\[N] 42

/=/[N] 50 /=\[N+] 2 -[P] 186

-[P|r] 13 -[P+] 12 -[P+|r] 1

-[S] 866 =[S] 221 -[S|r] 291

[s|r] 1 :[s|r] 265 [H] 23

-[H] 8510 -[F] 662 [Cl] 1417

-[Cl] 705 [Br] 345 -[Br] 64

-[I] 112
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Feature selection during the property predictions

The molecular features chosen in the QSPR model rely on the molecular structure of the 

compound (refer to Fig. S1). Firstly, the canonical molecular signature was generated for a 

compound, and then the Tree-LSTM network for this compound was built according to the 

signature tree for mapping the molecular structure. Afterwards, the numeric vectors 

representing molecular features were fed to the nodes of the Tree-LSTM network. Finally, a 

vector generated in the Tree-LSTM network was introduced to the BPNN for training the 

predictive model.

Fig. S1 The way of selecting molecular features for presenting the compound during predictions.
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Algorithms of model development and predicting

Fig. S2 The algorithm of model development with the Tree-LSTM network and BPNN.

The algorithm of model development with the Tree-LSTM network and BPNN is illustrated in 

Fig. S2. For supporting the development of the predictive model, molecular features were 

firstly extracted from the molecules of the collected dataset. Afterwards, the signature trees 

of compounds were generated for further mapping to the Tree-LSTM networks. Therefore, 

the vectors of molecular features can be inputted into the Tree-LSTM networks, and a vector 

was generated as an input for the BPNN. Within the BPNN, the properties were correlated to 

the molecular structures, and the QSPR model was obtained after massive training and 

testing. Afterwards, the QSPR model was evaluated with an external set, discussed on its 
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Applicability Domain and compared with the reported model to investigate its performance. 

As such, an accurate and reliable QSPR model was generated for predicting the log KOW of 

organic compounds.

The algorithm of the proposed model for predicting with the Tree-LSTM network and 

BPNN is illustrated in Fig. S3. During predicting with the developed QSPR model, the 

molecular structure of a new compound is used to generate the signature tree which can be 

mapped to the Tree-LSTM network. Afterwards, using the vectors which were generated 

during the model development, the Tree-LSTM network outputs a vector integrated the 

features of the molecular structure for the BPNN. Relying on the parameters and hyper-

parameters of the BPNN determined during model development, the BPNN makes a numeric 

prediction and outputs a predicted value for the log KOW of the compound.

Fig. S3 The algorithm of the model for predicting with the Tree-LSTM network and BPNN.
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External validation on the external set

Apart from the training and test sets, an external set was adopted as the additional test set 

to evaluate the predictivity of the final model in this research. According to the research of 

Chirico et al.,1 the external validation indices (i.e., root mean square error (RMSE), mean 

absolute error (MAE) and determination coefficient (R2)) have been calculated to measure 

the performance of the predictive model as summarized in Table S3.

Table S3 The statistics results for the ISO-DNN model on the training and external sets.

N RMSE MAE R2

Training set 8534 0.2836 0.2101 0.9741

External set 1067 0.4656 0.3355 0.9285
a The number of data points;
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As it turns out, the RMSE and MAE of the training set is lower than those of the external 

set, and the R2 of the training set is closer to 1.0000. It indicated that the developed QSPR 

model can make more accurate predictions for the training set. In view of that the similar 

results of these external validation indices between the training and external sets, the 

developed predictive model is acceptable and it has satisfactory applicability.
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Application Domain

The predictions can be considered reliable for the compounds which fall in the Applicability 

Domain (AD) of the predictive model. The Williams plot is a recommended leverage 

approach for AD investigation which provides a graphical detection of both the response 

outliers and the structurally influential outliers in a predictive model. In this research, the AD 

of the developed model was visualized with the Williams plot which is displayed with the 

plot of standardized residuals versus hat values as exhibited in Fig. S4.

Fig. S4 The Applicability Domain of the developed QSPR model.

In the Williams plot, the compounds with standardized residuals greater than 3 

standard deviation units are identified as response outliers. Part of the response outliers of 

the developed predictive model were marked with numbers and detailed as follows: 

cephaloridine (1), methyl 3-[5-acetyl-2-[2-[[3-ethyl-5-[(3-ethyl-4-methyl-5-oxopyrrol-2-yl) 

methylidene]-4-methylpyrrol-2-ylidene]methyl]-3-methyl-4-oxo-1H-cyclopenta[b]pyrrol-6-

ylidene]-4-methyl-3,4-dihydropyrrol-3-yl]propanoate (2), sarmoxicillin (3), (4aR,6R,7R,7aS)-

6- (6-amino-2-bromopurin-9-yl)-2-hydroxy-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2] 

dioxaphosphinin-7-ol (4), prolylphenylalanine (5), thienylglycine (6), 8-thiomethyl cyclic AMP 

(7), 1-bromo-4-[2-[2-(4-methoxyphenoxy)ethoxy]ethoxy]-2,5-dimethylbenzene (8), N,N- 

diethyl-3-methoxy-4-(2-hydroxy-5-sec-butylphenylazo)benzenesulfonamide (9), 1-butyl-5- 
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[[3-[(2-chlorophenyl)methyl]-4-oxo-2-sulfanylidene-1,3-thiazolidin-5-ylidene]methyl]-4- 

methyl-2-oxo-6-(4-phenylpiperazin-1-yl)pyridine-3-carbonitrile (10), (E)-4-(dimethylamino)- 

4-oxobut-2-enoic acid (11), (E)-2-cyano-3-amino-3-(isopropylamino)propenoic acid methyl 

ester (12) and [4-[2-(diaminomethylidene)hydrazinyl]phenyl]iminourea (13). Moreover, the 

hat value of a compound greater than the critical hat value indicates the compound is 

outside of the model’s structural AD and it could lead to unreliable predictions. As it turns 

out, 22 compounds were detected as structurally influential outliers and part of them were 

marked with numbers and exhibited as follows: mellitic acid (14), 

perfluoromethylcyclohexylpiperidine (15), 2-nitrostrychnidin-10-one (16), strychnine (17) 

and perfluorocyclohexane (18). The way for calculating the standardized residual, hat value 

and critical hat value can be found in the published works.2,3
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Impact of isomeric features on predictive accuracy

A comprehensive investigation found that 1663 out of the 10668 compounds contain 

isomeric features in developing the QSPR model and they were described with the isomeric 

features, while the remaining 9005 compounds described with the canonical SMILES strings 

contain no isomeric features.

Fig. S5 The tendency in losses on the training and test sets during training for the CAN-DNN model.

In order to evaluate the impact of isomeric features on the predictive accuracy of the 

model, we replace all the isomeric SMILES strings with the canonical SMILES strings, and on 

this basis a new QSPR model was developed with the same training, test and external sets 

used for developing the ISO-DNN model. The QSPR model obtained in the 100th epoch was 

considered to be the global optimum model (refer to Fig. S5) and it was saved as the final 

model (represented as CAN-DNN model) for log KOW prediction. And the predictive 

performance of the training, test and external sets is visualized in Fig. S6.
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Fig. S6 The scatter plots of predicted - experimental value with the CAN-DNN model for (a) training set, (b) 
test set and (c) external set.

Furthermore, the predictive accuracy of the two model was measured with several 

statistical indices as summarized in Table S4. The results show that the predictive accuracy of 

the CAN-DNN model is lower than that of the ISO-DNN model. It proves that the isomeric 

features involving in model development are conducive to improve the accuracy of the 

predictive model.

Table S4 The statistics results for the ISO-DNN and CAN-DNN models in log KOW prediction.

N RMSE MAE R2

ISO-DNN 10668 0.3386 0.2376 0.9606

CAN-DNN 10668 0.3707 0.2634 0.9552
a The number of data points;
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Additionally, the impact of isomeric features on the predictive accuracy of the model was 

investigated by comparing the predictive accuracy of the KOWWIN model and the developed 

ISO-DNN model performing on the 1663 isomeric compounds and the remaining 9005 
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compounds. As displayed in Table S5, the predictive accuracy on the 1663 isomeric 

compounds is much lower than that on the other 9005 compounds with the KOWWIN model. 

However, using the ISO-DNN model, the predictive accuracy on the 1663 isomeric 

compounds is close to that on the other 9005 compounds. Meanwhile, comparing with the 

KOWWIN model, the improvement in the predictive accuracy for the 1663 isomer 

compounds is markedly higher than the other 9005 compounds using the ISO-DNN model. It 

also demonstrated that the predictive accuracy on log KOW is significantly improved with 

the participation of the isomeric features. Therefore, the isomeric features are considered 

beneficial to improve the predictive accuracy of the model.

Table S5 The statistics results for the KOWWIN and ISO-DNN models in log KOW prediction for isomeric 
compounds and other compounds.

Isomeric compounds Other compounds

KOWWIN ISO-DNN KOWWIN ISO-DNN

N a 1663 1663 9005 9005

RMSE b 0.5563 0.3957 0.3928 0.3269

MAE c 0.4060 0.2546 0.2857 0.2345

R2 d 0.9352 0.9619 0.9480 0.9603
a The number of data points;
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