Supporting Information (SI)

An N-Heterocyclic Carbene Functionalised Covalent Organic Framework: Atomically Dispersed

Palladium Catalyst for Coupling Reactions under Mild Condition

Junjuan Yang^{†,1}, Yuanyuan Wu^{†,1}, Xiaowei Wu², Wenjing Liu¹, Yaofang Wang¹, Junwen Wang^{*,1}

¹ Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University No. 1, Gongyuan Street, Linfen 041004, China; ² School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (P. R. China).

Table of Contents

Experimental Procedures	2
1.1. Materials and methods	2
1.2. Synthesis of bi-NHC monomer	3
1.3. Synthesis of COF-NHC	4
1.4. Synthesis of Pd@COF-NHC	5
1.5. General procedure for the Suzuki-Miyaura coupling reaction	5
1.6. General procedure for the cross-coupling between triaylbismuths and aryl halide	5
1.7. Recycle test	6
Results and Discussion	7
2.1. FT-IR spectrum analysis	7
2.2. ¹³ C CP/MAS NMR spectrum analysis	8
2.3. Morphology and composition	9
2.4. Powder X-ray diffraction Analysis	
2.5. Thermal gravimetric analysis	15
2.6. XPS analysis	16
2.7. Catalyst activity results of Pd@COF-NHC	17
2.8. NMR spectra of compounds	
References	45

Experimental Procedures

1.1. Materials and methods

All starting chemicals and reagents were purchased from commercial suppliers and used as received, unless otherwise mentioned. The design and preparation of bi-NHC substituted 1,4-di(4-formylbenzyl)benzene (NFB) monomer will be described later. Spectroscopic measurements were conducted under ambient conditions using dry solvents. The **FT-IR** spectra were recorded using KBr pellets in the range of 4000–400 cm⁻¹ on a Varian 660-IR spectrometer. Nuclear magnetic resonance (NMR) spectra were obtained on a Bruker Avance III HD (600 MHz) spectrometer. The chemical shifts are expressed in parts per million (ppm) with TMS as internal standard. Solid-state cross-polarisation magicangle spinning (CP/MAS) ¹³C NMR spectra were measured on an Agilent DD2 600 Solid NMR 3 System with 3.2mm zirconia rotors. The spinning rate was 15 kHz, and the contact time was 3 ms. Thermogravimetric analysis (TGA) measurements were carried out on a NETZSCH DSC 200F3 instrument equipped with an automatically programmed temperature controller. The TGA curves were measured in an air atmosphere by heating the samples from 25 °C to 800 °C at a rate of 10 °C min⁻¹.Powder X-ray diffraction (PXRD) measurements were carried out in reflection mode on a Rigaku Ultima IV-185 diffractometer with Cu-filtered K α radiation ($\lambda = 1.5404$ Å) and a position-sensitive detector (LynxEye, step size: 0.02°, step time: 10s). The PXRD measurements of COF materials were performed by depositing the powder on a silicon wafer and applying a low scan speed and small angle increments (from $2\theta = 1.5^{\circ}$ up to 30° with 0.02° increment).Computational simulation and Pawley refinement were performed to obtain the probable structure of COF-NHC using Materials Studio software package.Scanning electron microscopy (SEM) images were recorded using a JEOL JSM-7500F instrument under an accelerating voltage of 20-30 kV. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM-2100 instrument. The TEM samples were sonicated for 2.0 min in ethanol followed by drop casting on carbon-coated copper TEM grids. X-ray photoelectron spectroscopy (XPS) data were obtained using a Thermo K-Alpha⁺scientific electron spectrometer using AI Ka radiation. Theamount of palladium was measured by inductively coupled plasmamass spectrometry (ICP-MS, Aglient 7800). The N₂ isotherm measurements were carried out at 77 K in a liquid nitrogen bath. The samples were heated to 120 °C and kept at this temperature for at least 12 hours under vacuum for activation. The dry samples were thereafterloaded into sample tubes and activated under high vacuum (less than 10⁻⁵ Torr) at 200 °C. The apparent surface areas were calculated from nitrogen adsorption data by multipoint **BET** analysis. The apparent micropore distributions were calculated from nitrogen adsorption data by the NLDFT method.

1.2. Synthesis of bi-NHC monomer

Synthesis of bi-NHC substituted 1,4-di(4-formylbenzyl)benzene (NFB): The bi-NHC containing diformyl monomer was designed and prepared in six steps as follows. (Step 1) Bromine water (19.8 mL, 0.39 mmol) was dropped slowly into a mixture of p-xylene (23.1mL, 0.19 mol) and iodine (0.30 g, 1.18 mmol), and then the mixture was kept overnight in a 250-mL round bottom flask at 0 °C and stirred at 30 °C. The formed white precipitates were filtered and then recrystallised with ethanol to obtain the pure 1,4-dibromo-2,5-dimethylbenzene (compound 1). ¹H NMR (DMSO-*d*₆): δ 2.32 (s,6H), 7.39 (s, 2H); ¹³C NMR (DMSO-*d*₆): δ 22.1, 123.3, 133.9, 137.0 ppm^[1].

(Step 2) Compound **1** (2.0 g, 7.57 mmol) was dissolved in CCl₄ (200 mL), then it was added with NBS (2.6 g, 15.2 mmol) initiated by benzoperoxide (0.04 g, 0.15 mmol) and stirred at 90 °C for 12 h. The insoluble substance was filtered to remove the solvent, and the crude product was recrystallised in ethanol to obtain the white pure 1,4-dibromo-2,5-bis(bromomethyl)benzene (compound **2**). ¹H NMR (DMSO-*d*₆): δ 4.44 (s, 4H), 7.59 (s, 2H) ppm; ¹³C NMR (DMSO-*d*₆): 30.5, 122.3, 134.3, 138.0 ppm.

(Step 3) Imidazole (0.78 g, 11.5 mmol) was added to an anhydrous THF suspension of NaH in a 100 mL round bottom flask, after alternating treatments of degassing with N₂ and vacuum for three times ^[1]. The reaction mixture was stirred at 50 °C for 0.5 h, added with compound **2** (2.0 g, 4.75 mmol), and then heated to 60 °C and refluxed for 4.0 h. After removing most of the solvent, the reaction mixture was poured into H₂O, and the yellow solid precipitate was filtered to give the compound **3**, which was used without purification in the next step. ¹H NMR (DMSO-*d*₆): δ 5.27 (s, 4H), 6.96 (s, 2H), 7.21(s, 2H), 7.27 (s, 2H), 7.77 (s, 2H) ppm; ¹³C NMR (DMSO-*d*₆): δ 49.3, 120.1, 122.3, 129.4, 133.5, 138.4, 139.1 ppm.

(Step 4) A mixture of **3** (1.0 g, 2.52 mmol), 4-formylphenylboronic acid (1.51 g, 10.08 mmol), K_2CO_3 (1.4 g, 10.08 mmol), and Pd(PPh₃)₄ (0.62 g, 0.53 mmol) in a mixed solvent of 1,4-dioxane and H₂O (v/v = 5:1) was heated at 90 °C overnight under N₂ protection. Then, CHCl₃ was added, the insoluble solid was removed, and washed with water. The aqueous phase was extracted with CHCl₃ and the combined organic phase was repeatedly washed and dried over MgSO₄. Compound**4** (NFB-H) was obtained as a brown solid after removing the organic solvents. This compound was used without purification in the fifth step. ¹H NMR (DMSO-*d*₆) δ 5.17 (s, 4H), 6.74 (s, 2H), 6.85 (s, 2H), 6.97 (s, 2H), 7.30

(s, 2H), 7.51 (d, *J*=8.08, 4H), 7.95 (d, *J*=8.16Hz, 4H), 10.03 (s, 2H) ppm; ¹³C NMR (DMSO-*d*₆): δ 50.1, 119.2, 128.1, 128.4, 130.4, 131.2, 132.4, 134.1, 135.8, 137.8, 143.7, 191.0 ppm.

(Step 5, 6) 1-lodopropane (4.46 mmol) was added to **4** (1.0 g, 2.23 mmol) in THF, and the reaction mixture was stirred at room temperature for two days. The precipitated yellow solid was then filtered and recrystallised in diethyl ether to give the product **5**, followed by anion exchange with NH₄PF₆ to obtain the final product **NFB** (compound **6**) ^[2]. **NFB-Pr:** little yellow, ¹H NMR (DMSO-*d*₆) δ 0.74 (t, *J* = 7.3 Hz, 6H), 1.67 (q, *J* = 7.2Hz, 4H), 4.04 (t, *J* = 6.9 Hz, 4H), 5.58 (s, 4H), 7.48 (d, *J* = 2.3Hz, 4H), 7.64 (d, *J*=7.9Hz, 4H), 7.69 (s, 2H), 8.01 (d, *J* = 8.0 Hz, 4H), 9.01 (s, 2H), 10.12 (s, 2H) ppm; ¹³C NMR (DMSO-*d*₆) δ 10.8, 23.3, 50.5, 50.7, 123.0, 123.1, 130.0, 130.3, 132.5, 132.9, 136.0, 136.8, 141.0, 144.7, 193.4 ppm.

1.3. Synthesis of COF-NHC

1.3.1. Synthesis of COF-NHC

A round bottom centrifuge tube (1.5 mL) was charged with **TAB** (9.30 mg, 0.04 mmol) and **NFB** (49.33 mg, 0.06mmol) in 1-butyl-3-methylimidazoliumbis((trifluoromethyl)sulfonyl)imide ([BMIm][NTf₂], 100 μL). The reaction mixture was kept at room temperature for 3 h to afford a yellow-brown precipitate, which was isolated by centrifugation and washed with ethyl acetate (3*10 mL) and acetonitrile (3*10 mL). The solvent was removed under vacuum followed by dryingat 80 °C for 12 h to afford COF-NHC as a yellow powder (29.32 mg, 50% yield). IR (powder, cm⁻¹): 3405, 3325, 3212, 3051, 2923, 2850, 2601, 1651, 1547, 1539, 1418, 1330, 1129, 847, 662.

1.3.2. Synthesis of COF-Im

In a manner similar to the preparation of COF-NHC, a round bottom centrifuge tube (1.5 mL) was charged with **TAB** (9.30 mg, 0.04 mmol) and **NFB-Im** (27.79 mg, 0.06mmol) in 1-butyl-3-methylimidazoliumbis((trifluoromethyl)-sulfonyl)imide ([BMIm][NTf₂], 100 μ L). The reaction mixture was kept at room temperature for 3 h to afford a greybrown precipitate, which was isolated by centrifugation and washed with ethyl acetate (3×10 mL) and acetonitrile (3×10 mL). The solvent was removed under vacuum, and the product wasdried at 80 °C for 12 h to afford COF-Im as a yellow powder (33.38 mg, 90% yield). IR (powder, cm⁻¹): 3406, 2929, 2859, 2591, 1636, 1602, 1449, 1401, 1282, 1081, 830, 622.

1.4. Synthesis of Pd@COF-NHC

The heterogeneous catalyst Pd@COFs was prepared by post-synthesis of $Pd(OAc)_2$ into COFs. To a 25-mL two-necked round bottom flask, $Pd(OAc)_2$ (26.94 mg, 0.12 mmol) was dissolved in 10 mL of acetonitrile, and then one of the COFs (either COF-Im, 37.09 mg, 0.06 mmol orCOF-NHC, 58.63 mg, 0.06 mmol) was introduced. The reaction mixture was stirred at 75 °C for 3 h. The resulting solid was isolated by centrifugation, washed with acetonitrile using Soxhlet extraction for 24 h under an inert N₂ atmosphere, and then dried at 80 °C under vacuum for 12 h to give the Pd@COF-NHC and Pd@COF-Im. The products were both grey in colour.

1.5. General procedure for the Suzuki-Miyaura coupling reaction

In a typical activity test for the heterogeneous catalyst Pd@COFs, aryl halide (0.5 mmol), phenylboronic acid (0.55 mmol), a base (1.5 mmol), Pd@COFs (0.5 mol%), and 2.5 mL of solvent were added to 10 mL round bottom flask, and the reaction mixture was stirred at ambient temperature and atmosphere for 1.0 h. After the reaction was completed (monitored by TLC), the mixture was centrifuged and the solid was washed with water (3×5 mL) and acetonitrile (3×5 mL). The combined organic phase was washed with water (3×5 mL) to remove the base residue. Then, the organic phase was evaporated under vacuum leaving the crude product, which waspurified by column chromatography over silica gel to obtain the final product.

1.6. General procedure for the cross-coupling between triaylbismuths and aryl halide

In a typical run, a mixture of Pd@COF-NHC (2 mol%), triarylbismuths (1 mmol), aryl iodide (0.43 mmol), a base (4 mmol), and solvent (2.5 mL) was stirred at room temperature for 5.0 h under atmosphere. Afterwards, the content was centrifuged. The solid was washed with water and acetonitrile and used for the next round of reaction, while the liquid was extracted with dichloromethane. The combined organic extract was washed with brine (15mL), dried over

anhydrous MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by column chromatography to afford biaryl compounds.

1.7. Recycle test

The recycle test used *p*-nitrobromobenzene (0.5 mmol) with phenylboronic acid (0.55mmol), potassium carbonate (207 mg, 1.5 mmol), and Pd@COF-NHC (0.5 mol%) in 2.5 mL aqueous solution. After each cycle, the catalyst was isolated by centrifugation, washed with water and acetonitrile, and then used directly without other post treatment.

Results and Discussion

2.1. FT-IR spectrum analysis

Figure S1FT-IR spectra of COF-NHC and Pd@COF-NHC.

2.2. ¹³C CP/MAS NMR spectrum analysis

Figure S2¹³C CP/MAS NMR spectra of COF-Im (a), COF-NHC (b) and Pd@COF-NHC (c). Asterisks denote spinning sidebands. The assignments of ¹³C chemical shifts were indicated in the chemical structures.

2.3. Morphology and composition

Figure S3 SEM images of COF-NHC.

Figure S4 SEM images of Pd@COF-NHC.

Figure S5 TEM images of COF-NHC.

Figure S6 HRTEM images of COF-NHC.

Figure S7 TEM of Pd@COF-NHC.

Figure S8 HRTEM images of Pd@COF-NHC.

Figure S9 EDS mapping of composition elements C, N, and Pd.

Figure S10 Selected area electron diffraction (SAED) pattern.

2.4. Powder X-ray diffraction Analysis

Molecular modeling of COFs was generated with the Materials Studio (ver. 8.0) suite of programs. Crystal structures models were built by using *Visualizer* module, unit cell dimension was set to the theoretical parameters. Pawley refinement was carried out by using *Reflex*, a software package for crystal determination from PXRD pattern. The Pawley refinement was performed to optimize the lattice parameters iteratively until the *R*_{wp} value converges and the overlay of the observed with refined profiles shows good agreement. The lattice models (cell parameters, atomic positions, and total energy) were then fully optimized using MS *Forcite* molecular dynamics module (universal force-field, Qeq, Ewald summations) method.

Figure S11 PXRD patterns of COF-NHC: (a) experimental (black), simulated PXRD patterns using AA (red) and staggered AB (blue) stacking modes; (b) Indexed experimental (black) and Pawly-refined (red) PXRD patterns with their difference (green) and the theoretical patterns for the eclipsed structures (blue, AA); (c) Eclipsed-stacked COF-NHC.

Table S1 Energy calculations	
Staking models	Total energy (kcal/mol)
AA	2527.8
1 Å offset-AA	3679.9
2 Å offset-AA	3207.4
4 Å offset-AA	3377.7
AB	2728.3

Figure S12 a) AA stacking structure; b) side view of idea AA stacking structure and c) the total energy after geometrical energy minimization of ideal AA stacking structure.

Figure S13 a) AB stacking structure; b) side view of idea AB stacking structure and c) the total energy after geometrical energy minimization of ideal AB stacking structure.

Table S2 Refined unit cell parameters and fractional atomic coordinates for **COF-NHC** using AA eclipsed stacking mode

COF-N	COF-NHC : Space group: P6				
a = b =3	a = b = 32.81 Å, c = 3.41 Å				
$\alpha = \beta =$	90°, γ= 120°				
Atom	X	у	Z		
C1	0.49407	0.45597	0.90547		
C2	0.53924	0.49421	0.82575		
C3	0.5442	0.53938	0.82409		
C4	0.58519	0.58316	0.64294		
C5	0.62419	0.51337	0.70138		
C6	0.65508	0.50109	0.52344		
C7	0.63704	0.45674	0.34797		
C8	0.58868	0.42489	0.3657		
C9	0.55875	0.43804	0.51468		
C10	0.57511	0.48276	0.67986		
C11	0.61875	0.32255	-0.17487		
C12	0.6553	0.36873	-0.16116		
N13	1.02511	1.39476	0.83938		
C14	1.01116	1.35214	0.99578		
C15	1.05046	1.34798	1.06346		
N16	1.08856	1.38824	0.94663		
C17	1.07201	1.41504	0.79996		
C18	1.13621	1.39687	0.89084		
C19	0.54722	0.72293	0.97686		
C20	0.53583	0.76104	0.86249		
N21	0.35506	0.59621	-0.03595		
C22	0.33179	0.55819	0.16733		
H23	0.48962	0.42197	0.96268		
H24	0.56787	0.5864	0.39302		
H25	0.61482	0.58081	0.51967		
H26	0.63907	0.5454	0.87156		
H27	0.69232	0.5255	0.53167		
H28	0.57281	0.38923	0.25399		
H29	0.5223	0.41198	0.48586		
H30	0.58279	0.31503	-0.14411		
H31	0.97513	1.32601	1.04669		
H32	1.05094	1.31727	1.17312		
H33	1.09291	1.44643	0.62932		
H34	1.13914	1.38906	0.5946		

H35	1.14225	1.37045	1.03979
H36	0.52166	0.68916	0.83839
H37	0.53858	0.71357	1.27503
H38	0.5637	0.78764	0.67376
H39	0.53321	0.78036	1.11291
H40	0.50141	0.7447	0.71107
H41	0.29593	0.54547	0.25691
F42	1.0247	1.39167	1.05449
P43	1.05143	1.37096	1.36832
F44	1.08249	1.35324	1.07672
F45	1.05239	1.41317	1.0593
F46	1.04783	1.32739	1.06443
F47	0.99825	1.32955	1.55845
F48	1.10482	1.41094	1.56529

2.5. Thermal gravimetric analysis

Figure S14 TGA curve of COF-NHC. The weight loss (8%) observed in the temperature of about 275 °C could be ascribed to the removal of [BMIm][NTF₂] in the pores of COF-NHC.

Figure S15 TGA curve of Pd@COF-NHC. The weight loss (9.7%) observed in the temperature of about 253 °C could be ascribed to the removal of [BMIm][NTF₂] and solvents in the pores of Pd@COF-NHC.

2.6. XPS analysis

2.7. Catalyst activity results of Pd@COF-NHC

2.7.1. Catalyst of Suzuki-Miyaua reaction

Table S3 Optimization Condition Studies of Suzuki-Miyaura Cross Coupling^a

√ x +	(HO) ₂ B-	Cat., Base	→ < < < < < < < < < < < < < < < < < < <	—Me			
1	2	Solvent, r.t., 1.0 h	3				
Entry	Catalyst		Pd content	x	Solvent	Base	Vield(%) ^c
Littiy	ligand	Pd ^b	(mol %)	Χ	Solvent	Dase	field(70)
1	COF-Im	Pd(OAc) ₂	1	Cl	MeOH	K ₂ CO ₃	33
2	COF-NHC	Pd(OAc) ₂	1	Cl	MeOH	K_2CO_3	78
3	Pd@COF-NHC		1	Cl	MeOH	K_2CO_3	79
4	Pd@COF-NHC		1	Br	MeOH	K ₂ CO ₃	99
5	Pd@COF-NHC		1	Ι	MeOH	K ₂ CO ₃	99
6	Pd@COF-NHC		0.5	Br	MeOH	K ₂ CO ₃	99
7	Pd@COF-NHC		0.25	Br	MeOH	K ₂ CO ₃	85
8	Pd@COF-NHC		0.5	Br	MeOH	КОН	94
9	Pd@COF-NHC		0.5	Br	MeOH	KOtBu	95
10	Pd@COF-NHC		0.5	Br	MeOH	K_3PO_4	98
11	Pd@COF-NHC		0.5	Br	MeOH	_	Trace
12	Pd@COF-NHC		0.5	Br	EtOH	K ₂ CO ₃	99
13	Pd@COF-NHC		0.5	Br	THF	K ₂ CO ₃	96
14	Pd@COF-NHC		0.5	Br	CH ₃ CN	K ₂ CO ₃	91
15	Pd@COF-NHC		0.5	Br	Dioxane	K ₂ CO ₃	80
16	Pd@COF-NHC		0.5	Br	DMF	K ₂ CO ₃	55
17	Pd@COF-NHC		0.5	Br	NMP	K ₂ CO ₃	87
18	Pd@COF-NHC		0.5	Br	MeOH:H ₂ O = 4:1	K ₂ CO ₃	99
19	Pd@COF-NHC		0.5	Br	$EtOH:H_2O = 4:1$	K ₂ CO ₃	99
20	Pd@COF-NHC		0.5	Br	H ₂ O	K ₂ CO ₃	99

^a Reaction condition: halobenzene (0.50 mmol), 4-methylphenylboronic acid (0.55 mmol), base (1.5 mmol), solvent (2.5 mL), room temperature for 1.0 h; ^b Pd(OAc)₂ (0.5 mol%); ^c Pd@COF-NHC (0.5 mol%); ^d Isolated yields.

2.7.2 Stability and reusability of Pd@COF-NHC

Table S4 Recycle test of Pd@COF-NHC in the Suzuki-Miyaura Cross Coupling Reaction of p-nitrobromobenzene and Phenylboronic Acid^a

O_2N - Br + - B(OH) ₂ $\xrightarrow{Pd@COF-NHC, K_2CO_3}$ $H_2O, r.t., 2.0 h$ O_2N	
Entry	Yield (%) ^b
fresh	99
cycle 1	99
cycle 2	99
cycle 3	99
cycle 4	99
cycle 5	99
cycle 6	99
cycle 7	96

cycle 8

^a Reaction condition: *p*-nitrobromobenzene (0.50 mmol), phenylboronic acid (0.55 mmol), K_2CO_3 (1.5 mmol), Pd@COF-NHC (0.5 mol%), solution (2.5 mL, H₂O), room temperature for 1.0 h; ^b Isolated yields.

Figure S17 Representative TEM of recycled catalyst of Pd@COF-NHC 337.5

2.7.3. Catalyst of carbon-carbon cross reaction

Table S5 Optimization Studies on the cross-coupling of 4-iodonirtobenzene with BiPh₃^a

O ₂ N-	+ Ph ₃ Bi <u>Pd@COF</u> Base, Sc	$\xrightarrow{\text{-NHC}} O_2 N \longrightarrow$	—Ph		
1	4	3d			
Entry	Solvent	Base	Time (h)	Yield (%) ^b	
1	DMSO	K ₂ CO ₃	5	56	
2	DMSO	КОН	5	35	
3	DMSO	KOAc	5	43	
4	DMSO	K ₃ PO4	5	48	
5	DMSO	KO ^t Bu	5	21	
6	EtOH	K ₂ CO ₃	5	93	
7	H ₂ O	K ₂ CO ₃	5	Trace	
8	DMF	K ₂ CO ₃	5	82	

9	THF	K ₂ CO ₃	5	43
10	CH ₃ CN	K ₂ CO ₃	5	46
11	MeOH	K ₂ CO ₃	5	97
12	1,4-dioxane	K ₂ CO ₃	5	33
13	NMP	K ₂ CO ₃	5	5
14	EtOH:H ₂ O=4:1	K ₂ CO ₃	5	96
15	EtOH:H ₂ O=4:1	K ₂ CO ₃	2	55
16	EtOH:H ₂ O=4:1	K ₂ CO ₃	3	70
17	EtOH:H ₂ O=4:1	K ₂ CO ₃	4	85
18	EtOH:H ₂ O=4:1	K ₂ CO ₃	8	98

^a Reactions condition: 4-iodonitrobenzene (1 mmol), triphenylbismuths (0.43 mmol), base (4 mmol), solvent (2.5 mL), Pd@COF-NHC (2 mol%) room temperature; ^b Isolated yields.

2.8. NMR spectra of compounds

2.8.1. The spectra of synthesis NFB

2.8.2 Spectra of compounds 3

1,1'-biphenyl(3a)

¹H NMR (CDCl₃):δ7.34 (t, *J*= 7.3 Hz, 4H), 7.41-7.45 (m, 4H), 7.59 (t, *J*=7.8Hz, 2H) ppm.¹³C NMR (CDCl₃): δ 127.2, 127.3, 128.8, 141.3 ppm.

4-methyl-1,1'-biphenyl (3b)

¹H NMR (CDCl₃): δ 2.33 (s, 3H), 7.18 (d, *J* = 6.0Hz, 2H), 7.25 (t, *J* = 6.7 Hz, 1H), 7.35 (t, *J* = 6.8 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.51 (d, *J* = 7.9 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 20.1, 125.9, 126.0, 127.7, 128.4, 136.0, 137.3, 140.11 ppm.

4-methoxy-1,1'-biphenyl (3c)

¹H NMR (CDCl₃): δ 3.78 (s, 3H), 6.91 (d, *J* = 8.8 Hz, 2H), 7.23 (t, *J* = 6.2 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.45-7.49 (m, 4H) ppm; ¹³C NMR (CDCl₃): δ 55.4, 114.2, 126.7, 126.8, 128.2, 128.7, 133.8, 140.8, 159.2 ppm.

27

4-nitro-1,1'-biphenyl (3d)

¹H NMR (CDCl₃): δ7.48 (t, *J* = 7.36 Hz, 1H), 7.53 (d, *J* = 7.15 Hz, 2H), 7.66 (d, *J* = 7.19 Hz, 2H), 7.77 (d, *J* = 8.83 Hz, 2H), 8.33 (d, *J* = 8.83 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 124.1, 127.4, 127.8, 128.9, 129.1, 138.8, 147.1, 147.6 ppm.

4-chloro-4'-methyl-1,1'-biphenyl (3e)

¹H NMR (CDCl₃): δ 2.39 (s, 3H), 7.24 (d, J = 7.5 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 21.1, 126.8, 128.2, 128.9, 129.6, 133.0, 137.1, 137.5, 139.6 ppm.

4-chloro-4'-nitro-1,1'-biphenyl (3f)

¹H NMR (CDCl₃): δ 7.40 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 8.23 (d, *J* = 8.8 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 123.2, 126.7, 127.6, 128.4, 134.3, 136.2, 145.3, 146.2, ppm.

4-chloro-1,1'-biphenyl (3g)

¹H NMR (CDCl₃): δ7.29 (t, *J* = 7.3 Hz, 1H), 7.33 (d, *J* = 8.6 Hz, 2H), 7.36 (t, *J* = 7.9 Hz, 2H), 7.44 (d, *J* = 8.6Hz, 2H), 7.48 (d, *J* = 7.1Hz,2H)ppm; ¹³C NMR (CDCl₃): δ126.0, 126.6, 127.4, 127.9, 127.9 ppm.

[1,1'-biphenyl]-3-amine (3h)

¹H NMR (CDCl₃): δ 3.64 (s, 2H), 6.59-6.61 (m, 1H), 6.83 (t, *J* = 2.0 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.8 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 112.9, 113.1, 116.7, 126.1, 126.2, 127.6, 128.6, 140.4, 141.5, 145.7 ppm.

[1,1'-biphenyl]-4-amine (3i)

¹H NMR (CDCl₃): δ 3.64 (s, 2H), 6.68 (d, *J* = 8.3 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.30-7.35 (m, 2H), 7.46 (d, *J* = 7.8 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 114.3, 125.2, 125.4, 127.0, 127.6, 130.6, 140. 1, 144.8 ppm.

[1,1'-biphenyl]-4-carbonitrile (3j)

¹H NMR (CDCl₃): δ 7.36 (t, *J* = 7.5Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.52 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H) , 7.66 (d, *J* = 8.6 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 109.9, 117.9, 126.2, 126.7, 127.6, 128.1, 131.6, 138.2, 144.7 ppm.

4-methyl-4'-nitro-1,1'-biphenyl (3k)

¹H NMR (CDCl₃): δ 2.35 (s, 3H), 7.23 (d, J = 7.7 Hz, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 8.21 (d, J = 8.6 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 20.2, 123.1, 126.2, 126.5, 128.9, 134.8, 138.1, 145.8, 146.6 ppm.

4'-methyl-[1,1'-biphenyl]-4-carbonitrile (3l)

H₃C-CN

¹H NMR (CDCl₃): δ 2.34(s, 3H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 20.1, 109.5, 118.0, 126.0, 126.4, 126.8, 131.5, 135.2, 137.7, 144.6 ppm.

¹H NMR (CDCl₃): δ 2.31 (s, 6H), 7.16 (d, *J* = 7.9 Hz, 4H), 7.40 (d, *J* = 8.1 Hz, 4H) ppm; ¹³C NMR (CDCl₃): δ 20.0, 125.8, 128.4, 135.7, 137.2 ppm.

4-methoxy-4'-methyl-1,1'-biphenyl (3n)

¹H NMR (CDCl₃): δ 2.31 (s, 3H), 3.77 (s, 3H), 6.89 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 7.5 Hz, 2H), 7.45 (d, *J* = 7.6Hz, 2H), 7.52 (d, *J* = 8.3Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 20.0, 54.3, 113.1, 125.6, 126.9, 128.4, 132.7, 135.3, 136.9, 157.9 ppm.

4'-methyl-[1,1'-biphenyl]-3-amine (3o)

¹H NMR (CDCl₃): δ 2.31 (s, 3H), 3.70 (s, 2H), 6.58 (d, *J* = 7.9 Hz, 1H), 6.82 (s, 1H), 6.91 (d, *J* = 7.7 Hz, 1H), 7.12-7.16 (m, 3H), 7.39 (d, *J* = 8.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 20.1, 112.7, 112.8, 116.5, 125.9, 128.3, 128.6, 135.9, 137.5, 141.3, 145.6 ppm.

4-methoxy-4'-nitro-1,1'-biphenyl (3p)

¹H NMR (CDCl₃): δ 3.81 (s, 3H), 6.95 (d, *J* = 8.8 Hz, 2H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.9 Hz, 2H), 8.21 (d, *J* = 8.9 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 54.4, 113.6, 123.1, 126.1, 127.6, 130.1, 145.5, 146.2, 159.4 ppm.

4'-methoxy-[1,1'-biphenyl]-4-carbonitrile (3q)

¹H NMR (CDCl₃): δ3.79(s, 3H), 6.93 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.62 (d, *J* = 8.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 54.4, 109.1, 113.5, 118.1, 126.1, 127.3, 130.5, 131.6, 144.2, 159.2 ppm.

4,4'-dimethoxy-1,1'-biphenyl (3r)

¹H NMR (CDCl₃): δ 3.71 (s, 6H), 6.61 (d, *J* = 8.9 Hz, 4H), 7.48 (d, *J* = 8.9 Hz, 4H) ppm; ¹³C NMR (CDCl₃): δ 54.3, 81.6, 115.3, 137.2, 158.4 ppm.

4'-methoxy-[1,1'-biphenyl]-3-amine (3s)

H₂N OCH₃

¹H NMR (CDCl₃): δ 3.65 (s, 2H), 3.77 (s, 3H), 6.57 (d, *J* = 7.9 Hz, 1H), 6.80 (s, 1H), 6.88 (d, *J* = 8.4 Hz, 3H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 54.3, 112.5, 112.5, 113.0, 116.3, 127.1, 128.6, 132.9, 141.0, 145.7, 158.1 ppm.

4'-methoxy-[1,1'-biphenyl]-4-amine (3t)

¹H NMR (CDCl₃): δ 3.64 (s, 2H), 3.77 (s, 3H), 6.68 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ 54.3, 113.1, 114.4, 126.4, 126.6, 130.4, 132.9, 144.3, 157.4 ppm.

References

- S1 T. Takagi ;T.Miwa; H.Masu, Synthesis and Optical Properties of π-Conjugated Polymers Containing Fused Imidazole
 Skeleton. *Macromolecules*, 2016. 49, 8879.
- S2 J.Wang;H. Song ;Q. Li;F. Xu; Z. Zhang, Macrocyclic dinuclear gold(I) and silver(I) NHCs complexes. *Inorg. Chim. Acta*, 2005. **358**, 3653.