Supporting Information

Two birds with one stone: One-pot simultaneous synthesis of 2,2,2-trifluoroethylphenanthridines

and benzochromenones featuring with utilization of the byproduct of Togni's reagent

Cai Gao, Bin Li, Xueyang Geng, Qianting Zhou, Xinying Zhang,* and Xuesen Fan*

Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green

Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province

for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of

Environment, Henan Normal University, Xinxiang, Henan 453007, China

E-mail: xinyingzhang@htu.cn; xuesen.fan@htu.cn

Contents

Ι	General experimental information	S2		
П	Experimental procedures and spectroscopic data			
III	Mechanism studies	S15-S16		
IV	Copies of ¹ H and ¹³ C NMR spectra of 4a-4s	S17-S54		
V	Copies of ¹ H and ¹³ C NMR spectra of 5a-51	S55-S68		
VI	Copies of ¹ H and ¹³ C NMR spectra of 7 and 8	S69-S71		
VII	X-ray crystal structure and data of 4j	S72-S73		
VIII	References	S74		

I. General experimental information

Commercial reagents were used without further purification. Vinyl azides (1),¹ cyclic α -diazo carbonyl compounds (2),² the derivatives of Togni's reagent (3)³ and [RhCp*Cl₂]₂⁴ were prepared based on literature procedures. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 150 MHz. The ¹⁹F NMR spectra were recorded at 376 MHz or 565 MHz. Chemical shifts were expressed in parts per million (δ), and were reported as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet), etc. The coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were obtained *via* ESI mode by using a MicrOTOF mass spectrometer. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

II. Experimental procedures and spectroscopic data

1. Study on the effect of different transition metal complexes/salts as possible catalyst

	N ₃ , 1a	$+ \underbrace{\begin{array}{c} N_2 \\ 2a \end{array}}_{2a} + \underbrace{\begin{array}{c} CF_3 \\ 3a \end{array}}_{3a} + \underbrace{\begin{array}{c} CF_3 \\ H \end{array}}_{H}$	catalyst, Cu(OAc) ₂ OAc, acetone, 100 °C	4a + 5a + 5a	
_	entry	catalyst —	Y	Yield (%) ^{<i>a,b</i>}	
				5a	
	1	$[IrCp*Cl_2]_2$	30	11	
	2	[Ir(cod)Cl] ₂	ND	ND	
	3	[Rh(cod)Cl] ₂	trace	trace	
	4	[RhCp*(CH ₃ CN) ₃][S	$[bF_6]_2$ 51	28	
	5	[RhCp*(OAc) ₂]	2 69	47	
	6	[Ru(p-cymene)Cl	2]2 ND	ND	
	7	$[Ru(cod)Cl_2]$	ND	ND	
	8	Co(OAc) ₂	ND	ND	
	9	RhCl ₃ ·3H ₂ O	ND	ND	
	10	$Pd(OAc)_2$	ND	ND	
^{<i>a</i>} Reaction conditions: 1a (0.3 mmol), 2a (0.6 mmol), 3a (0.2 mmol), catalyst (0.01 mmol), Cu(OAc) ₂ (0.4 mmol), HOAc (0.2 mmol), acetone (2 mL), 100 °C, 3 h. ^{<i>b</i>} Isolated yield.					

 Table S1. Effect of different transition metal complexes/salts as catalyst

2. General synthetic procedure and spectroscopic data of products 4, 5, 7 and 8

To a reaction tube equipped with a stir bar were charged with vinyl azide (1, 0.3 mmol), cyclic α -diazo carbonyl compound (2, 0.6 mmol), Togni's reagent (3, 0.2 mmol), Cu(OAc)₂ (0.4 mmol), HOAc (0.2 mmol), [Cp*RhCl₂]₂ (0.01 mmol) and acetone (2 mL). The resulting mixture was then stirred at 100 °C under air for 3 h. Upon completion, it was cooled to room temperature, quenched with saturated brine (5 mL), and extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/acetone (20:1) as eluent to afford products **4** and **5**. Products **7** and **8** were obtained in a similar manner from the reaction of **1a** with **6** and **3a**.

6-(2,2,2-Trifluoroethyl)-3,4-dihydrophenanthridin-1(2*H*)-one (4a)

White solid (40.2 mg, 72%), mp: 125-126 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.26-2.30 (m, 2H), 2.84 (t, J = 6.0 Hz, 2H), 3.36 (t, J = 6.0 Hz, 2H), 4.17 (q, J = 10.2 Hz, 2H), 7.66-7.69 (m, 1H), 7.86-7.88 (m, 1H), 8.15 (d, J = 8.4 Hz, 1H), 9.49 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.7, 33.6, 40.3 (q, ² $J_{C-F} = 29.6$ Hz), 40.4, 120.9, 125.2 (q, ¹ $J_{C-F} = 276.8$ Hz), 125.5, 126.6, 126.9, 127.5, 132.9, 134.6, 155.3 (q, ³ $J_{C-F} = 3.3$ Hz), 159.8, 200.7. ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.47. HRMS calcd for C₁₅H₁₃F₃NO: 280.0944 [M+H]⁺, found: 280.0943.

9-Methyl-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4b)

White solid (39.9 mg, 68%), mp: 110-111 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.14-2.18 (m, 2H), 2.51 (s, 3H), 2.72 (t, *J* = 6.6 Hz, 2H), 3.23 (t, *J* = 6.0 Hz, 2H), 4.03 (q, *J* = 10.2 Hz, 2H), 7.39 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.2 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 9.18 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.7, 22.6, 33.6, 40.2 (q, ²*J*_{C-F} = 29.6 Hz), 40.7, 120.6, 125.2 (q, ¹*J*_{C-F} = 276.8 Hz), 125.30, 125.33, 125.6, 129.5, 134.9, 144.0, 154.9 (q, ³*J*_{C-F} = 3.2 Hz), 159.9, 200.8. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.55. HRMS calcd for C₁₆H₁₅F₃NO: 294.1100 [M+H]⁺, found: 294.1103.

9-(tert-Butyl)-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4c)

White solid (42.2 mg, 63%), mp: 138-139 °C. ¹H NMR (600 MHz, CDCl₃) δ : 1.47 (s, 9H), 2.24-2.28 (m, 2H), 2.83 (t, *J* = 6.6 Hz, 2H), 3.34 (t, *J* = 6.6 Hz, 2H), 4.13 (q, *J* = 10.2 Hz, 2H), 7.75 (dd, *J*₁ = 9.0 Hz, *J*₂ = 2.4 Hz, 1H), 8.07 (d, *J* = 9.0 Hz, 1H), 9.53 (d, *J* = 1.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.8, 31.0, 33.7, 35.8, 40.2 (q, ²*J*_{C-F} = 29.6 Hz), 40.8, 120.9, 121.8, 125.17, 125.24, 125.3 (q, ¹*J*_{C-F} = 276.8 Hz), 126.2, 134.9, 154.7 (q, ³*J*_{C-F} = 3.3 Hz), 156.5, 160.0, 201.0. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.51. HRMS calcd for C₁₉H₂₁F₃NO: 336.1570 [M+H]⁺, found: 336.1575.

9-Methoxy-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4d)

White solid (34.0 mg, 55%), mp: 166-167 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.20-2.27 (m, 2H), 2.80 (t, J = 6.4 Hz, 2H), 3.30 (t, J = 6.4 Hz, 2H), 4.00 (s, 3H), 4.06 (q, J = 10.4 Hz, 2H), 7.24 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.8$ Hz, 1H), 8.00 (d, J = 9.2 Hz, 1H), 8.97 (d, J = 2.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.7, 33.9, 40.4 (q, ² $_{J_{C-F}} = 29.6$ Hz), 40.8, 55.7, 104.6, 120.0, 120.1, 122.6, 125.3 (q, ¹ $_{J_{C-F}} = 276.6$ Hz), 127.3, 137.2, 154.3 (q, ³ $_{J_{C-F}} = 3.3$ Hz), 161.0, 163.3, 201.0. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.61. HRMS calcd for C₁₆H₁₅F₃NO₂: 310.1049 [M+H]⁺, found: 310.1051.

1-Oxo-6-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydrophenanthridin-9-yl acetate (4e)

Yellow solid (34.4 mg, 51%), mp: 67-69 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.21-2.27 (m, 2H), 2.38 (s, 3H), 2.80 (t, J = 6.4 Hz, 2H), 3.32 (t, J = 6.4 Hz, 2H), 4.12 (q, J = 10.0 Hz, 2H), 7.42 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.4$ Hz, 1H), 8.13 (d, J = 9.2 Hz, 1H), 9.24 (d, J = 2.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.1, 21.6, 33.6, 40.4 (q, ² $_{J_{C-F}} = 29.6$ Hz), 40.5, 118.1, 120.5, 122.9, 125.0, 125.1 (q, ¹ $_{J_{C-F}} = 276.8$ Hz), 127.2, 128.4, 130.1, 133.4, 135.8, 154.1 155.1 (q, ³ $_{J_{C-F}} = 3.3$ Hz), 160.7, 169.1, 200.4. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.48. HRMS calcd for C₁₇H₁₅F₃NO₃: 338.0999 [M+H]⁺, found: 338.1005.

9-Fluoro-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4f)

White solid (34.5 mg, 58%), mp: 101-102 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.20-2.26 (m, 2H), 2.80 (t, J = 6.6 Hz, 2H), 3.32 (t, J = 6.6 Hz, 2H), 4.11 (q, J = 10.2 Hz, 2H), 7.38-7.42 (m, 1H), 8.14 (dd, $J_1 = 9.6$ Hz, $J_2 = 6.0$ Hz, 1H), 9.21 (dd, $J_1 = 12.0$ Hz, $J_2 = 2.4$ Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.6, 33.6, 40.4, 40.5 (q, ² $J_{C-F} = 29.6$ Hz), 111.1 (d, ² $J_{C-F} = 24.0$ Hz), 117.8 (d, ² $J_{C-F} = 25.2$ Hz), 120.5 (d, ⁴ $J_{C-F} = 5.4$ Hz), 124.2, 125.1 (q, ¹ $J_{C-F} = 276.8$ Hz), 128.5 (d, ³ $J_{C-F} = 9.8$ Hz), 136.6 (d, ³ $J_{C-F} = 12.0$ Hz), 155.0 (q, ³ $J_{C-F} = 2.3$ Hz), 161.0, 165.2 (d, ¹ $J_{C-F} = 252.6$ Hz), 200.3. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.53, -102.28. HRMS calcd for C₁₅H₁₂F₄NO: 298.0850 [M+H]⁺, found: 298.0853.

9-Chloro-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4g)

White solid (45.1 mg, 72%), mp: 122-123 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.15-2.19 (m, 2H), 2.73 (t, *J* = 7.2 Hz, 2H), 3.25 (t, *J* = 6.6 Hz, 2H), 4.02 (q, *J* = 10.2 Hz, 2H), 7.50 (dd, *J*₁ = 9.0 Hz, *J*₂ = 1.8 Hz, 1H), 7.96 (d, *J* = 9.0 Hz, 1H), 9.45 (d, *J* = 1.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.6, 33.7, 40.4 (q, ²*J*_{C-F} = 29.6 Hz), 40.5, 119.9, 125.0 (q, ¹*J*_{C-F} = 276.8 Hz), 125.1, 125.8, 127.0, 128.5, 135.3, 139.9, 155.2 (q, ³*J*_{C-F} = 3.3 Hz), 161.0, 200.2. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.54. HRMS calcd for C₁₅H₁₂ClF₃NO: 314.0554 [M+H]⁺, found: 314.0546.

9-Bromo-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4h)

White solid (49.3 mg, 69%), mp: 140-141 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.15-2.20 (m, 2H), 2.73 (t, *J* = 6.0 Hz, 2H), 3.26 (t, *J* = 6.0 Hz, 2H), 4.03 (q, *J* = 10.2 Hz, 2H), 7.65 (dd, *J*₁ = 9.0 Hz, *J*₂ = 1.8 Hz, 1H), 7.88 (d, *J* = 9.0 Hz, 1H), 9.63 (d, *J* = 1.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.6, 33.7, 40.4 (q, ²*J*_{C-F} = 29.6 Hz), 40.5, 119.7, 125.1 (q, ¹*J*_{C-F} = 276.8 Hz), 125.3, 126.9, 128.9, 129.1, 131.1, 135.4, 155.4 (q, ³*J*_{C-F} = 3.3 Hz), 160.9, 200.2. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.53. HRMS calcd for C₁₅H₁₂BrF₃NO: 358.0049 [M+H]⁺, found: 358.0050.

8-Chloro-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4i)

White solid (37.6 mg, 60%), mp: 141-142 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.16-2.21 (m, 2H), 2.74 (t, J = 6.6 Hz, 2H), 3.26 (t, J = 6.0 Hz, 2H), 4.02 (q, J = 10.2 Hz, 2H), 7.69 (dd, $J_1 = 9.6$ Hz, $J_2 = 2.4$ Hz, 1H), 7.99 (d, J = 1.8 Hz, 1H), 9.38 (d, J = 9.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.6, 33.5, 40.3 (q, ² $J_{C-F} = 29.6$ Hz), 40.5, 120.7, 124.3, 125.0 (q, ¹ $J_{C-F} = 276.8$ Hz), 127.7, 128.5, 132.9, 133.61, 133.63, 154.4 (q, ³ $J_{C-F} = 3.3$ Hz), 160.0, 200.4. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.48. HRMS calcd for C₁₅H₁₂ClF₃NO: 314.0554 [M+H]⁺, found: 314.0557.

6-(2,2,2-Trifluoroethyl)-3,4-dihydrobenzo[j]phenanthridin-1(2H)-one (4j)

Yellow solid (37.5 mg, 57%), mp: 185-186 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.28-2.33 (m, 2H), 2.87 (t, J = 6.6 Hz, 2H), 3.38 (t, J = 6.0 Hz, 2H), 4.29 (q, J = 10.2 Hz, 2H), 7.60 (t, J = 7.8 Hz, 1H), 7.65 (t, J = 7.2 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.70 (s, 1H), 10.08 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.7, 33.7, 40.56, 40.61 (q, ² $_{J_{C-F}} = 28.8$ Hz), 119.9, 124.9, 125.2 (q, ¹ $_{J_{C-F}} = 276.8$ Hz), 125.8, 126.2, 127.0, 128.4, 128.8, 129.1, 129.4, 131.4, 135.7, 157.3 (q, ³ $_{J_{C-F}} = 3.3$ Hz), 158.8, 200.8. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.09. HRMS calcd for C₁₉H₁₅F₃NO: 330.1100 [M+H]⁺, found: 330.1104.

6-(2,2,2-Trifluoro-1-phenylethyl)-3,4-dihydrophenanthridin-1(2H)-one (4k)

Brown oil (34.1 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ : 2.24-2.31 (m, 2H), 2.82 (t, J = 6.4 Hz, 2H), 3.42 (td, $J_1 = 6.4$ Hz, $J_2 = 2.0$ Hz, 2H), 5.63 (q, J = 8.8 Hz, 1H), 7.31-7.36 (m, 3H), 7.50-7.56 (m, 3H), 7.73-7.76 (m, 1H), 8.04 (d, J = 8.4 Hz, 1H), 9.44 (d, J = 8.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 21.8, 34.0, 40.7, 53.1 (q, ² $J_{C-F} = 27.3$ Hz), 120.3, 124.2, 125.4 (q, ¹ $J_{C-F} = 278.9$ Hz), 125.7, 126.8, 127.3, 128.7, 128.8, 130.0, 132.4, 133.3, 134.7, 158.5, 159.8, 200.8. ¹⁹F NMR (564 MHz, CDCl₃) δ : -64.88. HRMS calcd for C₂₁H₁₇F₃NO: 356.1257 [M+H]⁺, found: 356.1254.

6-(1-(3,4-Dimethoxyphenyl)-2,2,2-trifluoroethyl)-8,9-dimethoxy-3,4-dihydrophenanthridin-1(2*H*)-one (4l)

Yellow oil (45.6 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ : 2.22-2.28 (m, 2H), 2.79-2.82 (m, 2H), 3.30-3.42 (m, 2H), 3.83 (s, 3H), 3.84 (s, 3H), 3.92 (s, 3H), 4.05 (s, 3H), 5.38 (q, J = 8.4 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 7.02 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.15 (s, 1H), 7.20 (s, 1H), 9.01 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 22.0, 34.0, 40.9, 53.1 (q, ² $J_{C-F} = 26.3$ Hz), 55.7, 55.8, 56.0, 56.2, 102.8, 105.5, 111.0, 112.9, 119.2, 122.0, 122.6, 125.5 (q, ¹ $J_{C-F} = 280.1$ Hz), 126.0, 132.1, 149.1, 149.37, 149.42, 154.4, 156.0, 158.8, 201.4. ¹⁹F NMR (376 MHz, CDCl₃) δ : -64.94. HRMS calcd for C₂₅H₂₅F₃NO₅: 476.1679 [M+H]⁺, found: 476.1676.

3,3-Dimethyl-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2*H*)-one (4m)

White solid (34.4 mg, 56%), mp: 101-103 °C. ¹H NMR (600 MHz, CDCl₃) δ : 1.20 (s, 6H), 2.70 (s, 2H), 3.26 (s, 2H), 4.16 (q, J = 10.2 Hz, 2H), 7.66-7.69 (m, 1H), 7.85-7.88 (m, 1H), 8.15 (d, J = 8.4 Hz, 1H), 9.51 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 28.2, 32.8, 40.3 (q, ² $J_{C-F} = 29.6$ Hz), 47.6, 54.3, 119.9, 125.2 (q, ¹ $J_{C-F} = 276.8$ Hz), 125.4, 126.4, 126.8, 127.4, 132.9, 134.3, 155.7 (q, ³ $J_{C-F} = 3.3$ Hz), 158.3, 201.0. ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.48. HRMS calcd for C₁₇H₁₇F₃NO: 308.1257 [M+H]⁺, found: 308.1252.

2,2-Dimethyl-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4n)

White solid (25.2 mg, 41%), mp: 100-102 °C. ¹H NMR (600 MHz, CDCl₃) δ : 1.22 (s, 6H), 2.04 (t, J = 6.6 Hz, 2H), 3.28 (t, J = 6.0 Hz, 2H), 4.09 (q, J = 10.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 9.29 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 24.5, 29.7, 35.0, 40.1 (q, ² $_{J_{C-F}} = 28.5$ Hz), 42.9, 120.1, 125.2 (q, ¹ $_{J_{C-F}} = 276.8$ Hz), 125.6, 126.6, 127.0, 127.5, 132.9, 135.2, 154.9 (q, ³ $_{J_{C-F}} = 3.2$ Hz), 157.8, 205.3. ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.51. HRMS calcd for C₁₇H₁₇F₃NO: 308.1257 [M+H]⁺, found: 308.1257.

3-Phenyl-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (40)

White solid (48.3 mg, 68%), mp: 111-112 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.89-3.03 (m, 2H), 3.43-3.46 (m, 1H), 3.50-3.56 (m, 2H), 4.03-4.08 (m, 2H), 7.18-7.21 (m, 1H), 7.25-7.30 (m, 4H), 7.56-7.58 (m, 1H), 7.75-7.78 (m, 1H), 8.04 (d, J = 8.4 Hz, 1H), 9.43 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 39.4, 40.3 (q, ² $J_{C-F} = 29.6$ Hz), 41.2, 47.5, 120.3, 125.2 (q, ¹ $J_{C-F} = 276.8$ Hz), 125.5, 126.5, 126.7, 126.9, 127.1, 127.6, 128.9, 133.1, 134.4. 142.7, 155.8 (q, ³ $J_{C-F} = 3.3$ Hz), 159.1, 199.9. ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.40. HRMS calcd for C₂₁H₁₇F₃NO: 356.1257 [M+H]⁺, found: 356.1257.

3-(4-Fluorophenyl)-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4p)

White solid (45.5 mg, 61%), mp: 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.94-3.11 (m, 2H), 3.45-3.64 (m, 3H), 4.11-4.19 (m, 2H), 7.06 (t, J = 8.8 Hz, 2H), 7.31 (dd, $J_1 = 8.4$ Hz, $J_2 = 5.2$ Hz, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.86 (t, J = 8.0 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 9.51 (d, J = 8.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 38.8, 40.3 (q, ² $J_{C-F} = 29.6$ Hz), 41.4, 47.6, 115.7 (d, ² $J_{C-F} = 20.9$ Hz), 120.3, 125.2 (q, ¹ $J_{C-F} = 276.8$ Hz), 125.5, 126.5, 127.0, 127.7, 128.2 (d, ³ $J_{C-F} = 8.7$ Hz), 133.1, 134.4, 138.5 (d, ⁴ $J_{C-F} = 3.3$ Hz), 155.9 (q, ³ $J_{C-F} = 3.3$ Hz), 158.8, 161.8 (d, ¹ $J_{C-F} = 243.9$ Hz), 199.6. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.43, -115.64. HRMS calcd for C₂₁H₁₆F₄NO: 374.1163 [M+H]⁺, found: 374.1160.

3-(4-Chlorophenyl)-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4q)

White solid (53.7 mg, 69%), mp: 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.94-3.10 (m, 2H), 3.45-3.64 (m, 3H), 4.10-4.19 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.87 (t, J = 8.0 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 9.51 (d, J = 8.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 38.9, 40.4 (q, ² $J_{C-F} = 29.6$ Hz), 41.1, 47.3, 120.3, 125.2 (q, ¹ $J_{C-F} = 276.8$ Hz), 125.5, 126.5, 127.0, 127.7, 128.1, 129.0, 132.8, 133.1, 134.4, 141.2, 155.9 (q, ³ $J_{C-F} = 3.3$ Hz), 158.7, 199.4. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.42. HRMS calcd for C₂₁H₁₆ClF₃NO: 390.0867 [M+H]⁺, found: 390.0869.

3-(4-Bromophenyl)-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4r)

White solid (57.2 mg, 66%), mp: 143-144 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.94-3.11 (m, 2H), 3.48-3.64 (m, 3H), 4.11-4.19 (m, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.48-7.52 (m, 2H), 7.66-7.70 (m, 1H), 7.85-7.89 (m, 1H), 8.14 (d, J = 8.4 Hz, 1H), 9.51 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 38.9, 40.4 (q, ² $J_{C-F} = 29.6$ Hz), 41.0, 47.3, 120.3, 120.9, 125.2 (q, ¹ $J_{C-F} = 276.8$ Hz), 125.5, 126.5, 127.0, 127.7, 128.5, 132.0, 133.1, 134.4, 141.7, 155.9 (q, ³ $J_{C-F} = 3.3$ Hz), 158.7, 199.4. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.42. HRMS calcd for C₂₁H₁₆BrF₃NO: 434.0362 [M+H]⁺, found: 434.0358.

3-(4-Methoxyphenyl)-6-(2,2,2-trifluoroethyl)-3,4-dihydrophenanthridin-1(2H)-one (4s)

White solid (45.4 mg, 59%), mp: 148-150 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.93-3.10 (m, 2H), 3.47-3.63 (m, 3H), 3.81 (s, 3H), 4.10-4.18 (m, 2H), 6.89-6.93 (m, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.85 (t, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 9.51 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 38.7, 40.3 (q, ²*J*_{C-F} = 29.6 Hz), 41.5, 47.8, 55.3, 114.2, 120.3, 125.2 (q, ¹*J*_{C-F} = 276.8 Hz), 125.4, 126.5, 126.9, 127.6, 127.7, 133.0, 134.4, 134.9, 155.8 (q, ³*J*_{C-F} = 3.3 Hz), 158.6, 159.1, 200.0. ¹⁹F NMR (564 MHz, CDCl₃) δ : -62.41. HRMS calcd for C₂₂H₁₉F₃NO₂: 386.1362 [M+H]⁺, found: 386.1364.

3,4-Dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5a)

White solid (22.3 mg, 52%), mp: 165-167 °C. ¹H NMR (600 MHz, CDCl₃) δ: 2.16-2.20 (m, 2H), 2.65 (t, *J* = 6.6 Hz, 2H), 2.93 (t, *J* = 6.6 Hz, 2H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 7.2 Hz, 1H), 8.24 (d, *J* = 7.2 Hz, 1H), 9.01 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 20.0, 29.0, 38.9, 111.6, 119.8, 126.0, 128.4, 129.5, 134.0, 135.6, 160.5, 169.5, 197.0. HRMS calcd for C₁₃H₁₀NaO₃: 237.0522 [M+Na]⁺, found: 237.0528.

3,3-Dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5b)

White solid (26.6 mg, 55%), mp: 135-137 °C. ¹H NMR (600 MHz, CDCl₃) δ : 1.20 (s, 6H), 2.54 (s, 2H), 2.82 (s, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.80-7.83 (m, 1H), 8.30-8.31 (m, 1H), 9.06 (d, *J* = 8.4 Hz, 1H). ¹³C

NMR (150 MHz, CDCl₃) δ: 28.2, 32.0, 42.6, 52.9, 110.6, 119.8, 125.9, 128.4, 129.6, 133.9, 135.7, 160.8, 168.0, 197.0. HRMS calcd for C₁₅H₁₄NaO₃: 265.0835 [M+Na]⁺, found: 265.0832.

2,2-Dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5c)

White solid (10.7 mg, 22%), mp: 110-112 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 1.16 (s, 6H), 1.96 (t, J = 6.4 Hz, 2H), 2.94 (t, J = 6.4 Hz, 2H), 7.60-7.64 (m, 1H), 7.87-7.91 (m, 1H), 8.19 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 8.94 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 24.5, 25.7, 33.2, 42.0, 109.8, 120.1, 126.2, 128.3, 129.7, 134.5, 135.6, 160.7, 167.5, 201.8. HRMS calcd for C₁₅H₁₄NaO₃: 265.0835 [M+Na]⁺, found: 265.0830.

3-Phenyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5d)

White solid (34.2 mg, 59%), mp: 115-117 °C. ¹H NMR (600 MHz, CDCl₃) δ: 2.80-2.89 (m, 2H), 3.06-3.13 (m, 2H), 3.47-3.52 (m, 1H), 7.22-7.25 (m, 3H), 7.31-7.33 (m, 2H), 7.46-7.49 (m, 1H), 7.72-7.75 (m, 1H), 8.22 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 9.01 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 36.4, 38.0, 45.9, 111.4, 119.8, 126.0, 126.6, 127.6, 128.6, 129.1, 129.7, 133.8, 135.8, 141.4, 160.5, 168.6, 196.1. HRMS calcd for C₁₉H₁₄NaO₃: 313.0835 [M+Na]⁺, found: 313.0824.

3-(4-Fluorophenyl)-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5e)

White solid (32.7 mg, 53%), mp: 191-193 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.82-2.92 (m, 2H), 3.11 (d, J = 7.8 Hz, 2H), 3.52-3.57 (m, 1H), 7.07 (t, J = 8.4 Hz, 2H), 7.26-7.28 (m, 2H), 7.52 (t, J = 7.8 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 8.24 (d, J = 7.8 Hz, 1H), 9.02 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 36.4, 37.3, 45.9, 111.3, 115.9 (d, ² $J_{C-F} = 21.9$ Hz), 119.8, 125.9, 128.2 (d, ³ $J_{C-F} = 7.7$ Hz), 128.6, 129.6, 133.7, 135.7, 137.2 (d, ⁴ $J_{C-F} = 2.1$ Hz), 160.2, 162.0 (d, ¹ $J_{C-F} = 245.0$ Hz), 168.5, 195.8. ¹⁹F NMR (564 MHz, CDCl₃) δ : -114.80. HRMS calcd for C₁₉H₁₃FNaO₃: 331.0741 [M+Na]⁺, found: 331.0740.

3-(4-Chlorophenyl)-3,4-dihydro-1H-benzo[c]chromene-1,6(2H)-dione (5f)

White solid (33.7 mg, 52%), mp: 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ: 2.82-2.96 (m, 2H), 3.14 (d, *J* = 8.0 Hz, 2H), 3.51-3.60 (m, 1H), 7.21-7.25 (m, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.79-7.83 (m, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 9.07 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 36.2, 37.4, 45.7, 111.4, 119.9, 126.0, 128.0, 128.7, 129.2, 129.7, 133.4, 133.7, 135.8, 139.9, 160.3, 168.3, 195.6. HRMS calcd for C₁₉H₁₃ClNaO₃: 347.0445 [M+Na]⁺, found: 347.0448.

3-(4-Bromophenyl)-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5g)

White solid (39.0 mg, 53%), mp: 42-44°C. ¹H NMR (600 MHz, CDCl₃) δ : 2.81-2.90 (m, 2H), 3.09-3.11 (m, 2H), 3.49-3.55 (m, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.48-7.52 (m, 3H), 7.76 (t, *J* = 7.8 Hz, 1H), 8.22 (d, *J* = 7.8 Hz, 1H), 9.00 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 36.1, 37.4, 45.6, 111.3, 119.7, 121.3, 125.9, 128.4, 128.7, 129.6, 132.1, 133.6, 135.7, 140.5, 160.2, 168.3, 195.6. HRMS calcd for C₁₉H₁₃BrNaO₃: 390.9940 [M+Na]⁺, found: 390.9941.

3-(4-Methoxyphenyl)-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5h)

White solid (35.9 mg, 56%), mp: 148-149 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.82-2.95 (m, 2H), 3.13 (d, J = 8.0 Hz, 2H), 3.48-3.56 (m, 1H), 3.81 (s, 3H), 6.92 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.81 (t, J = 8.4 Hz, 1H), 8.30 (d, J = 8.0 Hz, 1H), 9.09 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 36.7, 37.2, 46.2, 55.4, 111.4, 114.4, 119.9, 126.0, 127.6, 128.6, 129.7, 133.5, 133.9, 135.8, 158.9, 160.5, 168.7, 196.2. HRMS calcd for C₂₀H₁₆NaO₄: 343.0941 [M+Na]⁺, found: 343.0937.

8-Methyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5i)

White solid (19.6 mg, 43%), mp: 176-177 °C. ¹H NMR (600 MHz, CDCl₃) δ : 2.15-2.19 (m, 2H), 2.46 (s, 3H), 2.65 (t, J = 6.6 Hz, 2H), 2.93 (t, J = 6.6 Hz, 2H), 7.60 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 1H), 8.09 (d, J = 0.6 Hz, 1H), 8.93 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 20.1, 21.2, 28.9, 38.9, 111.7, 119.9, 126.0, 129.3, 131.5, 136.9, 138.7, 160.7, 168.7, 197.0. HRMS calcd for C₁₄H₁₂NaO₃: 251.0679 [M+Na]⁺, found: 251.0681.

8-Fluoro-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5j)

White solid (16.7 mg, 36%), mp: 125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.15-2.22 (m, 2H), 2.67 (t, J = 6.4 Hz, 2H), 2.95 (t, J = 6.4 Hz, 2H), 7.48-7.53 (m, 1H), 7.93 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.8$ Hz, 1H), 9.12 (dd, $J_1 = 9.2$ Hz, $J_2 = 5.2$ Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 20.0, 28.8, 38.8, 111.2, 115.1 (d, ² $J_{C-F} = 23.0$ Hz), 122.0 (d, ³ $J_{C-F} = 7.7$ Hz), 123.6 (d, ² $J_{C-F} = 20.7$ Hz), 129.0 (d, ³ $J_{C-F} = 7.7$ Hz), 130.6 (d, ⁴ $J_{C-F} = 2.1$ Hz), 159.6 (d, ⁴ $J_{C-F} = 3.3$ Hz), 161.8 (d, ¹ $J_{C-F} = 249.3$ Hz), 168.8, 196.8. ¹⁹F NMR (376 MHz, CDCl₃) δ : -110.19. HRMS calcd for C₁₃H₉FNaO₃: 255.0428 [M+Na]⁺, found: 255.0434.

8-Chloro-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5k)

White solid (21.8 mg, 44%), mp: 171-172 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.08-2.14 (m, 2H), 2.59 (t, J = 6.8 Hz, 2H), 2.87 (t, J = 6.4 Hz, 2H), 7.65 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 8.16 (d, J = 2.4 Hz, 1H), 8.96 (t, J = 8.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 19.9, 28.9, 38.8, 111.2, 121.4, 127.9, 128.9, 132.5, 134.5, 135.8, 159.4, 169.6, 196.7. HRMS calcd for C₁₃H₉ClNaO₃: 271.0132 [M+Na]⁺, found: 271.0140.

8-Bromo-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (5l)

White solid (28.0 mg, 48%), mp: 179-180 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.15-2.21 (m, 2H), 2.66 (t, J = 6.4 Hz, 2H), 2.93 (t, J = 6.4 Hz, 2H), 7.87 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 8.40 (d, J = 2.4 Hz, 1H), 8.97 (d, J = 8.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 19.9, 29.0, 38.8, 111.2, 121.5, 122.3, 128.0, 132.0, 132.8, 138.6, 159.2, 169.7, 196.6. HRMS calcd for C₁₃H₉BrNaO₃: 314.9627 [M+Na]⁺, found: 314.9627.

5-(2,2,2-Trifluoroethyl)-7,8,9,10-tetrahydro-11*H*-cyclohepta[*c*]isoquinolin-11-one (7)

White solid (36.3 mg, 62%), mp: 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ: 1.90-2.01 (m, 4H), 2.84 (t, *J* = 6.0 Hz, 2H), 3.23 (t, *J* = 6.0 Hz, 2H), 4.13 (q, *J* = 10.4 Hz, 2H), 7.59-7.63 (m, 1H), 7.70-7.74 (m, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 22.9, 24.1, 35.7, 40.1 (q,

 ${}^{2}J_{C-F} = 29.6 \text{ Hz}$, 42.6, 124.8, 125.3, 125.4 (q, ${}^{1}J_{C-F} = 276.8 \text{ Hz}$), 126.5, 127.3, 129.1, 131.4, 133.6, 151.9, 152.3 (q, ${}^{3}J_{C-F} = 3.3 \text{ Hz}$), 208.4. ${}^{19}\text{F}$ NMR (564 MHz, CDCl₃) δ : -62.78. HRMS calcd for C₁₆H₁₅F₃NO: 294.1100 [M+H]⁺, found: 294.1100.

7,8,9,10-Tetrahydrocyclohepta[c]isochromene-5,11-dione (8)

White solid (21.9 mg, 48%), mp: 66-67 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.85-1.86 (m, 4H), 2.78 (t, *J* = 6.8 Hz, 2H), 2.93 (t, *J* = 6.4 Hz, 2H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.83-7.87 (m, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 8.18 (dd, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 22.4, 23.1, 32.3, 43.0, 116.4, 119.7, 124.6, 128.3, 129.7, 134.5, 135.3, 161.2, 163.6, 202.7. HRMS calcd for C₁₄H₁₂NaO₃: 251.0679 [M+Na]⁺, found: 251.0678.

3. Gram-scale preparation of 4a and 5a

To a reaction tube equipped with a stir bar were charged with (1-azidovinyl)benzene (**1a**, 7.5 mmol), 2-diazocyclohexane-1,3-dione (**2a**, 15 mmol), Togni's reagent (**3a**, 5 mmol), Cu(OAc)₂ (10 mmol), HOAc (5 mmol), [Cp*RhCl₂]₂ (0.25 mmol) and acetone (50 mL). The resulting mixture was then stirred at 100 °C under air for 3 h. Upon completion, it was cooled to room temperature, quenched with saturated brine, and extracted with EtOAc (50 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/acetone (20:1) as eluent to afford product **4a** (68%) and **5a** (50%).

III. Mechanism studies

1. Competition experiment (I)

To a reaction tube equipped with a stir bar were charged with (1-azidovinyl)benzene (**1a**, 0.3 mmol), 2-diazocyclohexane-1,3-dione (**2a**, 0.6 mmol), Togni's reagent (**3a**, 0.2 mmol), Cu(OAc)₂ (0.4 mmol), HOAc (0.2 mmol), $[Cp*RhCl_2]_2$ (0.01 mmol), TEMPO (0.4 mmol) and acetone (2 mL). The resulting mixture was then stirred at 100 °C under air for 3 h. Upon completion, it was cooled to room temperature, quenched with saturated brine, and extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/acetone (20:1) as eluent to afford **5a** in 50% yield. Meanwhile, **4a** was formed only in trace amount.

2. Competition experiment (II)

To a reaction tube equipped with a stir bar were charged with 2-iodobenzoic acid (0.2 mmol), 2-diazocyclohexane-1,3-dione (**2a**, 0.22 mmol), Cu(OAc)₂ (0.4 mmol), HOAc (0.2 mmol), [Cp*RhCl₂]₂ (0.01 mmol) and acetone (2 mL). The resulting mixture was then stirred at 100 °C under air for 3 h. Upon completion, it was cooled to room temperature, quenched with saturated brine, and extracted with EtOAc (10 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/acetone (20:1) as eluent to afford **5a** in 48% yield.

3. Competition experiment (III)

To a reaction tube equipped with a stir bar were charged with benzoic acid (0.2 mmol), 2-diazocyclohexane-1,3-dione (**2a**, 0.22 mmol), Cu(OAc)₂ (0.4 mmol), HOAc (0.2 mmol), [Cp*RhCl₂]₂ (0.01 mmol) and acetone (2 mL). The resulting mixture was then stirred at 100 °C under air for 3 h. Upon completion, it was cooled to room temperature, quenched with saturated brine, and extracted with EtOAc (10 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/acetone (20:1) as eluent to afford **5a** in 65% yield.

IV. Copies of ¹H and ¹³C NMR spectra of 4a-4s

200 150 100 50 0 F

V. Copies of ¹H and ¹³C NMR spectra of 5a-5l

- -0.000

-0.000

VI. Copies of ¹H and ¹³C NMR spectra of 7 and 8

VII. X-ray crystal structure and data of 4j

Fig. S1 X-ray structure of 4j with 30% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a chloroform solution of **4j**. Crystal data collection and refinement parameters of **4j** are summarized in Table S2. Intensity data were collected at 170 K on a SuperNova Dual diffractometer using mirror-monochromated CuK α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. The structure was solved by a combination of direct methods in SHELXTL and the difference Fourier technique, and refined by full-matrix least-squares procedures. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	C ₁₉ H ₁₄ F ₃ NO
Formula weight	329.31
Temp, K	169.99(10)
Crystal system	monoclinic
Space group	P21/c

Table S2 Crystallographic data and structure refinement results of 4j
<i>a</i> , Å	9.5181(2)
b, Å	21.4287(4)
<i>c</i> , Å	7.5942(2)
α (°)	90
β (°)	111.404(3)
γ (°)	90
Volume, Å ³	1442.09(6)
Ζ	4
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.517
λ, Å	1.54184
μ , mm ⁻¹	1.023
No. of data collected	7876
No. of unique data	2760
R _{int}	0.0381
Goodness-of-fit on F^2	1.242
R_1 , w R_2 ($I > 2\sigma(I)$)	0.0527, 0.1379
R_1 , w R_2 (all data)	0.0583, 0.1404

VIII. References

- (1) H.-T. Qin, S.-W. Wu, J.-L. Liu and F. Liu, Chem. Commun., 2017, 53, 1696.
- (2) Y. Jiang, V. Z. Y. Khong, E. Lourdusamy and C. M. Park, Chem. Commun., 2012, 48, 3133.
- (3) J. Sun, X. Zhen, H. Ge, G. Zhang, X. An and Y. Du, Beilstein J. Org. Chem., 2018, 14, 1452.
- (4) K.-I. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Org. Lett., 2004, 6, 2785.