Supplementary Information

Bifunctional phase-transfer catalysts for fixation of CO₂ with epoxides under

ambient pressure

Yue-Dan Li,^{a,†} Dong-Xiao Cui,^{a,b,†} Jun-Chao Zhu,^a Ping Huang,^a Zhuang Tian,^a Yan-Yan Jia,^b and

Ping-An Wang^{a,‡}

 ^aDepartment of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, P. R. China.
^bDepartment of Pharmaceutics, Xijing Hospital, The Fourth Military Medical University, Changle West Road 15, Xi'an 710032, P. R. China.

> [†]Co-first authors [‡]Corresponding author: ping_an1718@outlook.com Tel: 029-84776807

Table of Contents

1.	General Information S2	
2.	General procedure for the preparation of APTCs	S2
3.	APTCs catalyzed CO ₂ cycloaddition to epoxides	S4
4.	General procedure for the preparation of CPTCs	S6
5.	CPTCs catalyzed kinetic resolution of epoxides by CO ₂	S8
6.	NMR spectra of all products S9-S42	
7.	HMRS spectra of all new compounds S43-S67	
8.	HPLC traces of all enantiomeric products S68-S78	

General

¹H NMR, ¹³C NMR, ¹⁹F and ³¹P spectra were recorded at room temperature using 400 MHz *Bruker spectrometer*. The data are reported as follows: chemical shift δ in ppm (from internal tetramethylsilane on the δ scale in case of ¹H and CDCl₃ triplet in case of ¹³C), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectra were obtained by peak matching on BrukermaXis Spectrometer. Melting points are reported uncorrected and measured on Fukai-X-6 melting point apparatus. HPLC data were recorded on Agilent 1260 with UV detector. Analytical thin layer chromatography was performed on 0.25 mm silica gel plates with UV-254 fluorescent indicator. Flash column chromatography was performed using indicated solvent system on 200~300 mesh silica gel (SiO₂). All air- and water-sensitive reactions were carried out under an inert atmosphere in glassware, which had been oven-dried as per standard procedure. Unless otherwise noted, all reagents were commercially obtained and used without further purification. Benzyl chloride and benzyl bromide were freshly distilled and used in following steps.

1. The synthesis of achiral phase-transfer catalysts (APTCs)

A. Synthesis of **APTCs** with a urea group

APTC-10: $X = CH_2$, $R = 3,5-(CH_3)_2$, $Ar = 4-CF_3C_6H_4$, 83% yield.

Typical procedure:

To 1.0 mmol of 2-(pyrrolidin-1-yl)ethan-1-amine (115 mg) in dry CH₂Cl₂ (4.0 mL) was added by 1.05 mmol of 3,5-bistrifluorometylphenylisocyanate (270 mg) in dry CH_2Cl_2 (1.0 mL) at room temperature (r.t.). The mixture was stirred for 8 h under inert atmosphere. When TLC indicates the complete consumption of starting materials, the reaction mixture was evaporated under reduced pressure to yield a light yellow glue which was purified by a chromatography (petroether/ethyl acetate = 2/1, v/v) to give pure urea product as off-white flash column powder (351 mg, 95% yield). To the above-prepared urea in dry toluene (4.0 mL) was added by 1.05 mmol of BnBr (180 mg) in dry toluene (1.0 mL) at room temperature (r.t.). The mixture was heated to 80 °C by an oil-bath and stirred for 12 h under inert atmosphere. The reaction mixture was cooled to r.t. and the precipitate was collected and washed by $dry Et_2O$ for three to five times. This precipitate was dried under a reduced pressure to give APTC-1 as a pale powder (490 mg, 91% yield in two steps) which was used directly without further purification.

APTC-4 and APTC-6~10 was obtained by using the same procedure as APTC-1, respectively.

APTC-1: pale powder, 91% yield; ¹H NMR (400 MHz, CDCl₃) δ : 9.45 (s, 1H), 8.06 (s, 2H), 7.90 (t, J = 5.76 Hz, 1H), 7.57-7.48 (m, 4H), 7.45 (s, 1H), 4.75 (s, 2H), 4.02-3.98 (m, 2H), 3.86-3.73 (m, 4H), 3.62 (t, *J* = 5.72 Hz, 2H), 2.33 (m, 2H), 2.19 (m, 2H), 1.80 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.89, 141.16, 132.55, 131.98, 131.65, 131.19, 129.74, 126.90, 124.69, 121.98, 117.97, 115.13, 62.61, 61.43, 59.59, 58.41, 34.97, 21.30, 18.44; ¹⁹F NMR (376 MHz, CDCl₃) δ: -62.90; HRMS (ESI) *m/z* calcd. for C₂₂H₂₄F₆N₃O⁺ [M-Br]⁺: 460.1818, found 460.1829.

APTC-4: white powder, 89% yield; ¹H NMR (400 MHz, CDCl₃) δ: 9.52 (s, 1H), 8.03 (s, 2H), 7.61-7.44 (m, 6H), 7.28 (s, 1H), 5.08 (s, 2H), 4.13-4.00 (m, 7H), 3.88-3.85 (m, 2H), 3.54 (bs, 2H), 1.95 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.75, 140.92, 133.31, 132.10, 131.76, 131.41, 129.70, 125.37, 124.64, 121.93, 117.99, 115.38, 66.34, 60.38, 56.81, 56.32, 33.97; ¹⁹F NMR (376 MHz, CDCl₃) δ: -62.91; HRMS (ESI) *m/z* calcd. for C₂₂H₂₄F₆N₃O₂⁺ [M-Br]+: 476.1767, found 476.1779.

APTC-6: white powder, 79% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.66 (bs, 1H), 7.53-7.39 (m, 8H), 7.00 (s, 2H), 4.75 (s, 2H), 3.87-3.46 (m, 8H), 2.24 (s, 3H), 2.11-2.06 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.37, 136.79, 132.67, 131.76, 130.85, 129.55, 129.30, 127.36, 118.98, 62.49, 61.30, 59.44, 34.99, 21.27, 20.73; HRMS (ESI) *m/z* calcd. for C₂₁H₂₈N₃O⁺ [M-Br]⁺: 338.2227, found 338.2234.

APTC-7: white powder, 74% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.76 (s, 1H), 8.37 (s, 1H), 7.57-7.49 (m, 3H), 7.47-7.43 (m, 2H), 7.15 (s, 2H), 6.64 (s, 1H), 4.54 (s, 2H), 3.95-3.94 (m, 2H), 3.61 (m, 4H), 3.47 (m, 2H), 2.27 (s, 6H), 2.25 (s, 2H), 2.11 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.73, 138.43, 132.36, 131.14, 129.75, 126.92, 116.95, 62.00, 61.31, 60.01, 34.92, 21.36, 21.10; HRMS (ESI) *m/z* calcd. for C₂₂H₃₀N₃O⁺ [M-Br]⁺: 352.2383, found 352.2392.

APTC-8: white powder, 83% yield; ¹H NMR (400 MHz, CDCl₃) δ : 9.58 (s, 1H), 8.03 (s, 2H), 7.81 (d, J = 7.76 Hz, 2H), 7.67 (d, J = 7.84 Hz, 2H), 7.53 (bs, 1H), 7.42 (s, 1H), 5.01 (s, 2H), 4.05 (d, J = 5.12 Hz, 2H), 3.87 (br, 2H), 3.74-3.71 (m, 2H), 3.66 (br, 2H), 2.27 (s, 2H), 2.15 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.83, 141.05, 133.29, 133.01, 131.86, 130.88, 129.35, 128.23, 126.49, 124.62, 121.91, 117.85, 115.25, 61.73, 61.45, 59.61, 35.11, 21.22; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.99, -63.26; HRMS (ESI) *m/z* calcd. for C₂₃H₂₃F₉N₃O⁺ [M-Br]⁺: 528.1692, found 528.1698.

APTC-9: white powder, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.69 (s, 1H), 7.76 (d, J = 7.0 Hz, 2H), 7.58 (d, J = 7.04 Hz, 2H), 7.36 (d, J = 6.72 Hz, 3H), 7.01 (d, J = 7.36 Hz, 2H), 4.99 (s, 1H), 3.95 (s, 2H), 3.76 (s, 2H), 3.71 (s, 2H), 3.53 (s, 1H), 2.25 (s, 3H), 2.12 (br, 2H), 2.07 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.34, 136.62, 133.39, 132.91, 132.58, 132.05, 131.29, 129.38, 126.30, 124.72, 122.01, 118.95, 61.59, 61.34, 59.51, 35.15, 21.18, 20.67; ¹⁹F NMR (376 MHz, CDCl₃) δ : -63.08; HRMS (ESI) *m/z* calcd. for C₂₂H₂₇F₃N₃O⁺ [M-Br]⁺: 406.2101, found 406.2107.

APTC-10: white powder, 83% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.47 (s, 1H), 7.74 (s, 2H), 7.67 (s, 2H), 7.05 (m, 2H), 6.63 (s, 1H), 4.87 (s, 2H), 3.90~3.52 (dd, J = 1.96, 6.56 Hz, 8H), 2.23 (s, 6H), 2.11 (br, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.21, 138.87, 138.52, 133.26, 131.22, 126.44, 124.43, 116.57, 61.53, 59.42, 49.51, 49.30, 34.89, 21.34, 21.37; ¹⁹F NMR (376 MHz, CDCl₃) δ : -63.15; HRMS (ESI) *m/z* calcd. for C₂₃H₂₉F₃N₃O⁺ [M-Br]⁺: 420.2257, found 420.2264.

B. Synthesis of APTCs with a squaramide group (APTC-3)

Step 1: To a solution of 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-methoxycyclobut-3-ene-1,2-dione (1.0 mmol) in MeOH (3 mL) was added a solution of 2-morpholinoethan-1-amine (1.0 mmol) in MeOH (2 mL) at r.t.. The mixture was stirred for 24 h. The reaction mixture was filtered, and the precipitate was washed with cold MeOH (2×1.0 mL) to afford pure squaramide.

Step 2: To 0.5 mmol of squaramide in anhydrous toluene (2.0 mL) was added by 0.6 mmol of BnBr in anhydrous toluene (1.0 mL) at room temperature (r.t.). The mixture was stirred for 12 h under inert atmosphere (checked by TLC) at 80 °C. The precipitate was collected and washed by anhydrous Et_2O (3×1.0 mL) to afford pure phase-transfer catalysts.

APTC-3: white powder, 76% yield; ¹H NMR (400 MHz, DMSO- d_6) δ : 10.84 (s, 1H), 8.27 (br, 1H), 8.12 (s, 2H), 7.69 (br, 1H), 7.64 (d, J = 5.08 Hz, 2H), 7.55 (m, 3H), 4.85, (s, 2H), 4.24 (s, 2H), 3.59 (s, 4H), 3.45 (s, 2H), 2.07 (s, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ : 170.09, 163.94, 141.47, 133.18, 131.66, 130.86, 129.64, 128.80, 124.96, 122.25, 118.51, 115.51, 62.56, 61.43, 58.98, 38.53, 21.47; ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -61.73;

HRMS (ESI) m/z calcd. for $C_{25}H_{24}F_6N_3O_2^+$ [M-Br]⁺: 512.1767, found 512.1777. Synthesis of **APTCs** with a thiourea group (**APTC-2** and **APTC-5**) APTC-2 and APTC-5 were synthesized according to the literature procedure.¹

APTC-2: X = CH₂, 47% overall yields in 4 steps; APTC-5: X = CH₂O, 42% overall yields in 4 steps

APTC-2: light yellow powder, 47% yield for 4 steps; ¹H NMR (400 MHz, CDCl₃) δ : 7.49 (s, 1H), 7.38-7.24 (m, 5H), 7.21 (s, 2H), 4.30 (s, 2H), 3.85-3.82 (m, 2H), 3.37-3.35 (m, 6H), 2.18-2.14 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.10, 150.74, 135.97, 132.80, 129.02, 128.66, 127.68, 124.79, 122.86, 122.08, 116.06, 55.26, 54.83, 39.09, 36.08, 23.35; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.80; HRMS (ESI) *m/z* calcd. for C₂₂H₂₄F₆N₃S⁺ [M-Br]⁺: 476.1590, found 476.1598.

APTC-5: light yellow powder, 42% yield for 4 steps; ¹H NMR (400 MHz, CDCl₃) δ : 7.49 (s, 1H), 7.32-7.27 (m, 5H), 7.20 (s, 2H), 4.93 (s, 2H), 4.06 (s, 2H), 3.68 (t, *J* = 4.68 Hz, 4H), 2.56 (t, *J* = 6.52 Hz, 2H), 2.49 (br, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 151.11, 133.39, 132.93, 128.83, 128.60, 127.81, 124.85, 122.83, 122.14, 115.78, 66.78, 56.33, 53.10, 38.85, 35.78; ¹⁹F NMR (376 MHz, CDCl₃) δ : -64.22; HRMS (ESI) *m/z* calcd. for C₂₂H₂₄F₆N₃OS⁺ [M-Br]⁺: 492.1539, found 492.1543.

C. Synthesis of APTC-1'(mono-NMe-APTC-1)

The free amino group $(-NH_2)$ in 2-(pyrrolidin-1-yl)ethan-1-amine (330 mg) was protected by Boc₂O in the mixed solvent of THF-H₂O in the presence of NaHCO₃ to provide N-Boc-2-(pyrrolidin-1-yl)ethan-1-amine in quant. Yield which was directed reduced by 2.5 eq. LiAlH₄ in THF following by addition of 3,5-bistrifluorometylphenylisocyanate to give urea. To the above-prepared urea in dry toluene (4.0 mL) was added by 1.1 eq. of BnBr in dry toluene (1.0 mL) at room temperature (r.t.). The mixture was heated to 100 °C by an oilbath and stirred for 8 h under inert atmosphere. The reaction mixture was cooled to r.t. and the precipitate was collected and washed by dry Et₂O for three to five times. This precipitate was dried under a reduced pressure to give **APTC-1'** as a white powder (76% overall yield for 4 steps) which was used directly without further purification.

APTC-1²: white powder, ¹H NMR (400 MHz, CDCl₃ plus one drop of MeOD) δ : 8.04 (s, 2H), 7.50-7.48 (m, 6H), 4.57 (s, 2H), 4.02 (t, *J* = 5.64 Hz, 2H), 3.88-3.84 (m, 2H), 3.74 (t, *J* = 5.76 Hz, 2H), 3.61-3.57 (m, 2H), 3.25 (s, 3H, N-Me), 2.34 (m, 2H), 2.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃ plus one drop of MeOD) δ : 156.18, 141.05, 132.50, 131.64, 131.12, 129.67, 127.07, 124.86, 121.95, 119.87, 116.03, 61.90, 61.00, 43.44, 35.86, 21.38; ¹⁹F NMR (376 MHz, CDCl₃) δ : -63.11.

2. The cycloaddition of CO₂ to epoxides by APTCs

Typical procedure:

A mixture of 0.5 mmol of epoxide **1a** and 2.5 mol% of **APTC-1** (6.8 mg) was heated at 80 °C for 24 h under CO_2 atmosphere (1atm, using a balloon). After cooled to room temperature, a small amount of CH_2Cl_2 was added to the mixture and it was purified by a flash column chromatography (petroether/ethyl acetate = 10/1 to 3/1, v/v) to give cyclic carbonate **2a** as off-white solid.

Table S1. APTC-1 catalyzed cycloaddition of CO₂ to epoxides.

2a:² white powder, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.32 (t, J = 8.36 Hz, 2H), 7.03 (t, J = 7.36 Hz, 1H), 6.92 (d, J = 7.96 Hz, 2H), 5.07-5.02 (m, 1H), 4.62 (t, J = 8.48 Hz, 1H), 4.54 (dd, J = 5.88, 2.52 Hz, 1H), 4.25 (dd, J = 6.76, 3.88 Hz, 1H), 4.14 (dd, J = 7.12, 3.52 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.78, 154.86, 129.71, 121.97, 114.61, 74.26, 66.87, 66.25; HRMS (ESI) *m/z* calcd. for C₁₀H₁₀O₄Na⁺ [M+Na]⁺: 217.0471, found 217.0473.

2b:² white powder, 91% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.41-7.33 (m, 5H), 4.86-4.81 (m, 1H), 4.61(q, J = 10.08 Hz, 2H), 4.50 (t, J = 8.36 Hz, 1H), 4.40(dd, J = 6.04, 2.28 Hz, 1H), 3.73(dd, J = 7.12, 3.84 Hz, 1H), 3.63(dd, J = 7.28, 3.68 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.03, 137.11, 128.61, 128.11, 127.79, 75.06, 73.69, 68.84, 66.32; HRMS (ESI) *m/z* calcd. for C₁₁H₁₂NaO₄⁺ [M+Na]⁺: 231.0628, found 231.0631.

2c:² white powder, 90% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (s, 1H), 8.03 (s, 1H), 7.62 (t, *J* = 7.40 Hz, 1H), 7.48 (t, *J* = 7.81 Hz, 2H), 5.10-5.06 (m, 1H), 4.67-4.59 (m, 2H), 4.53 (dd, *J* = 8.72, 3.88 Hz, 1H), 4.45 (dd, *J* = 5.64, 3.12 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.98, 154.53, 133.77, 129.80, 128.68, 73.94, 66.13, 63.66; HRMS (ESI) *m/z* calcd. for C₁₁H₁₀NaO₅⁺ [M+Na]⁺: 245.0420, found 245.0418.

2d:² white powder, 90% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.05-6.89 (m, 4H), 5.04-5.00 (m, 1H), 4.61 (d, J = 7.00 Hz, 2H), 4.22 (q, J = 4.44 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.90, 150.36, 147.46, 123.41, 121.02, 116.59, 112.53, 74.58, 69.31, 66.37, 55.89; HRMS (ESI) *m/z* calcd. for C₁₁H₁₂NaO₅⁺ [M+Na]⁺: 247.0577, found 247.0589.

2e:² white powder, 89% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.18 (d, J = 4.60 Hz, 2H), 6.95 (t, J = 7.36 Hz, 1H), 6.80 (d, J = 8.44 Hz, 1H), 5.08-5.04 (m, 1H), 4.66-4.57 (m, 2H), 4.27 (dd, J = 7.56, 3.12 Hz, 1H), 4.13 (dd, J = 7.96, 2.72 Hz, 1H), 2.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.81, 154.92, 131.07, 127.07, 126.92, 121.64, 110.89, 74.34, 67.05, 66.27, 15.96; HRMS (ESI) *m/z* calcd. for C₁₁H₁₂NaO₄⁺ [M+Na]⁺: 231.0628, found 231.0624. **2f**: ² white powder, 81% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.14 (t, J = 5.24 Hz, 1H), 7.79 (t, J = 3.96 Hz, 1H), 7.52-7.47 (m, 3H), 7.35 (t, J = 7.60Hz, 1H), 6.77 (d, J = 7.60 Hz, 1H), 5.15 (m, 1H), 4.70-4.63 (m, 2H), 4.42 (dd, J = 7.64, 3.08 Hz, 1H), 4.26 (d, J = 10.72 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.15, 153.37, 134.47, 127.53, 126.77, 125.84, 125.49, 125.19, 121.61, 121.47, 104.83, 74.39, 67.21, 66.40; HRMS (ESI) *m/z* calcd. for C₁₄H₁₂NaO₄⁺ [M+Na]⁺: 267.0628, found 267.0627.

2g:² white powder, 66% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.45-7.36 (m, 5H), 5.69 (t, *J* = 8.00 Hz, 1H), 4.81 (t, *J* = 8.40 Hz, 1H), 4.34 (dd, *J* = 7.84, 0.76 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.83, 135.81,129.76, 129.26, 125.89, 78.00, 71.18; HRMS (ESI) *m/z* calcd. for C₉H₈NaO₃⁺ [M+Na]⁺: 187.0366, found 187.0372.

2h:² white powder, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.38 (t, *J* = 7.08 Hz, 2H), 7.15 (t, *J* = 8.08 Hz, 2H), 5.69 (t, *J* = 7.96 Hz, 1H), 4.82 (t, *J* = 8.68 Hz, 1H), 4.34 (t, *J* = 8.60 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.64, 162.16, 154.63, 131.58, 128.07, 127.99, 116.49, 116.27, 71.11; ¹⁹F NMR (376 MHz, CDCl₃) δ : -110.90; HRMS (ESI) *m/z* calcd. for C₉H₇FNaO₃⁺ [M+Na]⁺: 205.0271, found 205.0276.

2i.² white powder, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.43 (d, *J* = 8.20 Hz, 2H), 7.32 (d, *J* = 8.16 Hz, 2H), 5.68 (t, *J* = 7.92 Hz, 1H), 4.82 (t, *J* = 8.40 Hz, 1H), 4.32 (t, *J* = 8.12 Hz, 1H); HRMS (ESI) *m/z* calcd. for C₉H₇ClNaO₃+ [M+Na]⁺: 220.9976, found 220.9980.

2j: ² white powder, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.46 (br, 3H), 7.40 (br, 2H), 5.69 (t, *J* = 7.76 Hz, 1H), 4.82 (t, *J* = 8.24 Hz, 1H), 4.36 (t, *J* = 7.84 Hz, 1H), 2.19 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.77, 135.83, 129.74, 129.25, 125.85, 77.96, 71.14; HRMS (ESI) *m/z* calcd. for C₉H₈NaO₃⁺ [M+Na]⁺: 187.0366, found 187.0368; HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm, *rac*-form: t_r = 12.051 and 14.617 min; *enan*-form: *R*-major t_r = 12.238 and *S*-minor t_r = 14.870 min, 78.3% *ee*.

2k:² white powder, 71% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.45 (br, 3H), 7.39 (br, 2H), 5.69 (t, *J* = 7.68 Hz, 1H), 4.82 (t, *J* = 8.28 Hz, 1H), 4.36 (t, *J* = 7.96 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.82, 135.85, 129.73, 129.24, 125.88, 77.99, 71.16; HRMS (ESI) *m/z* calcd. for C₉H₈NaO₃⁺ [M+Na]⁺: 187.0366, found 187.0368; HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm, *rac*-form: t_r = 12.051 and 14.617 min; *enan*-form: *S*-major t_r = 15.007 and *R*-minor t_r = 14.876 min, 66.7% *ee*.

21:² white powder, 90% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.33 (t, J = 7.96 Hz, 2H), 7.04 (t, J = 7.36 Hz, 1H), 6.93 (d, J = 8.00 Hz, 2H), 5.07-5.02 (m, 1H), 4.64 (t, J = 8.44 Hz, 1H), 4.56 (dd, J = 5.92, 2.48 Hz, 1H), 4.26 (dd, J = 6.44, 4.12 Hz, 1H), 4.16 (dd, J = 7.08, 3.52 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.76, 154.70, 129.71, 122.01, 114.61, 74.13, 66.86, 66.25; HRMS (ESI) *m/z* calcd. for C₁₀H₁₀O₄Na⁺ [M+Na]⁺: 217.0471, found 217.0468; HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm, *rac*-form: t_r = 24.394 and 31.924 min; *S*-form: t_r = 31.441 min, >99% *ee*.

2m:² white powder, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.40-7.28 (m, 5H), 4.84-4.79 (m, 1H), 4.60 (q, J = 9.52 Hz, 2H), 4.48 (t, J = 8.36 Hz, 1H), 4.39 (dd, J = 6.00, 2.24 Hz, 1H), 3.72 (dd, J = 7.32, 3.68 Hz, 1H), 3.62 (dd, J = 7.36, 3.64 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.07, 137.18, 128.59, 128.08, 127.76, 75.13, 73.65, 68.88, 66.30; HRMS (ESI) *m/z* calcd. for C₁₁H₁₂NaO₄⁺ [M+Na]⁺: 231.0628, found 231.0619; HPLC: Chiralpak OD-H (*PrOH/n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm, *rac*-form: t_r = 35.168 and 49.587 min; *R*-form: t_r = 34.856 min, >99% *ee*.

2n:² white powder, 89% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.40-7.28 (m, 5H), 4.85-4.79 (m, 1H), 4.60 (q, J = 9.36 Hz, 1H), 4.48 (t, J = 8.36 Hz, 1H), 4.38 (dd, J = 6.00, 2.24 Hz, 1H), 3.72 (dd, J = 7.36, 3.64 Hz, 1H), 3.61 (dd, J = 7.36, 3.64 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.08, 137.19, 128.59, 128.07, 127.76, 75.14, 73.64, 68.89, 66.30; HRMS (ESI) *m/z* calcd. for C₁₁H₁₂NaO₄⁺ [M+Na]⁺: 231.0628, found 231.0624; HPLC: Chiralpak OD-H ('PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm, t_r = 35.168 and 49.587 min; *S*-form: t_r = 49.568 min, >99% *ee*.

3. The synthesis of chiral phase-transfer catalysts (CPTC-1~15)

CPTC-1, **CPTC-2**, **CPTC-6**, **CPTC-7~14** are known compounds, and the synthesis of them can be found in our previous report.³ **CPTC-3~5** were prepared as the procedure of **APTC-1**.

CPTC-3: white powder, 87% yield for two steps; $[\alpha]^{20}_D - 25^\circ$ (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 9.57 (s, 1H), 8.10 (s, 2H), 8.00-7.93 (m, 1H), 7.60-7.41(m, 5H), 4.82 (d, *J* = 13.44 Hz, 1H), 4.63 (m, 1H), 4.45 (d, *J* = 13.48 Hz, 1H), 4.24 (m, 1H), 3.83 (dd, *J* = 11.44, 2.44 Hz, 1H), 3.73-3.61 (m, 3H), 3.30 (d, *J* = 13.56 Hz, 1H), 2.49 (m, 1H), 2.34 (m, 1H), 2.17 (m, 2H), 1.95-1.88 (m, 1H), 1.84 (s, 2H), 1.09 (d, *J* = 6.76 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.88, 141.26, 132.27, 131.97, 131.65, 131.31, 129.81, 126.94, 124.73, 122.02, 118.04, 115.09, 63.42, 61.92, 61.69, 61.58, 49.64, 32.87, 21.61, 20.42, 19.62, 17.37; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.86; HRMS (ESI) *m/z* calcd. for C₂₅H₃₄BrF₆N₄O⁺ [M+NH₄]⁺: 599.1815, found 599.1832.

CPTC-4: white powder, 79% yield for two steps; $[\alpha]^{20}_D$ -14° (c = 0.25, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 8.60 (s, 1H), 7.81 (d, *J* = 9.6 Hz, 1H), 7.55-7.50 (m, 4H), 7.22 (s, 2H), 6.64 (s, 1H), 4.87 (d, *J* = 13.52 Hz, 1H), 4.62 (t, *J* = 12.76 Hz, 1H), 4.43 (d, *J* = 13.44 Hz, 1H), 4.30-4.23 (m, 1H), 3.76 (t, *J* = 12.76 Hz, 1H), 3.62 (m, 2H), 3.27 (d, *J* = 13.72 Hz, 1H), 2.45 (s, 1H), 2.27 (s, 6H), 2.19 (s, 1H), 2.13 (m, 2H), 1.89 (t, *J* = 5.52 Hz, 1H), 1.85 (s, 1H), 1.7 (d, *J* = 6.56 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.26, 138.32, 132.45, 131.06, 129.65, 127.29, 124.05, 116.51, 63.41, 61.75, 49.57, 32.87, 21.63, 21.38, 20.50, 19.68, 17.52; HRMS (ESI) *m/z* calcd. for C₂₅H₃₆BrN₃NaO⁺ [M+Na]⁺: 499.1934, found 499.1966.

CPTC-5: white powder, 82% yield for two steps; $[\alpha]^{20}_D$ -32° (c = 0.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 8.78 (s, 1H), 7.68-7.65 (m, 5H), 7.19 (s, 2H), 6.65 (s, 1H), 5.03 (d, *J* = 13.04 Hz, 1H), 4.82 (d, *J* = 13.2 Hz, 1H), 4.51 (m, 1H), 4.22 (m, 1H), 3.91-3.85 (m, 2H), 3.56 (d, *J* = 7.28 Hz, 1H), 3.50-3.46 (m, 1H), 3.34 (d, *J* = 6.90 Hz, 1H), 2.36 (m, 1H), 2.26 (s, 6H), 2.20-2.14 (m, 1H), 2.08 (s, 2H), 1.92 (s, 2H), 1.09-1.06 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.31, 139.22, 136.48, 133.27, 126.46, 124.27,116.48, 63.41, 61.96, 61.21, 60.90, 49.82, 32.87, 21.40, 21.22, 20.62, 19.66, 17.65; ¹⁹F NMR (376 MHz, CDCl₃) δ : -63.12; HRMS (ESI) *m/z* calcd. for C₂₆H₃₅BrF₃KN₃O⁺ [M+K]⁺: 580.1547, found 580.1549.

4. The kinetic resolution of epoxides by CO₂ in the presence of CPTCs

Typical procedure:

A mixture of 0.25 mmol of epoxide **1g** and 1.0 mol% of **CPTC-2** (1.5 mg) was heated at 60 °C for 24 h under CO_2 atmosphere (1atm, using a balloon). After cooled to room temperature, a small amount of CH_2Cl_2 was added to the mixture and it was purified by a flash column chromatography (petroether/ethyl acetate = 10/1 to 3/1, v/v) to give cyclic carbonate and epoxide respectively. The *ee* of products were determined by HPLC using a chiral column (Daicel Chiralpak AD-H or OD-H), and the absolute configurations of products were assigned according to literature report.⁴

Notes and References

- 1. J. Novacek, M. Waser, Eur. J. Org. Chem., 2014, 802.
- (a) W. Clegg, R. W. Harrington, M. North, R. Pasquale, *Chem.-Eur. J.*, 2010, 16, 6828; (b) L. Wu, H. Yang, H. Wang, J. Lu, *RSC Adv.*, 2015, 5, 23189; (c) H. Büttner, J. Steinbauer, T. Werner, *ChemSusChem*, 2015, 8, 2655.
- 3. J.-C. Zhu, D.-X. Cui, Y.-D. Li, J.-X. He, W.-P. Chen, P.-A. Wang, Org. Biomol. Chem., 2018, 16, 3012.
- (a) Y. Toda, Y. Komiyama, A. Kikuchi, H. Suga, ACS Catal., 2016, 6, 6906; (b) S.-Y. Liu, N. Suematsu, K. Maruoka, S. Shirakawa, Green Chem., 2016, 18, 4611; (c) J. Qin, V. A. Larionov, K. Harms, E. Meggers, ChemSusChem, 2019, 12, 320; (d) T. Ema, M. Yokoyama, S. Watanabe, S. Sasaki, H. Ota, K. Takaishi, Org. Lett., 2017, 19, 4070; (e) K. Takaishi, T. Okuyama, S. Kadosaki, M. Uchiyama, T. Ema, Org. Lett. 2019, 21, 1397.

NMR spectra copies of all new compounds

S12

10.0 9.5 9.0 8.5 8.0

HRMS copies of all new compounds

S43

Display Report							
Analysis Info Analysis Name D:\Data\2018\0112\lay-13.d Method pos_low-20151116.m Sample Name liuaiyun Comment Iuaiyun					Acquisition Date Operator Instrument	1/12/2018 1 Fan maXis	0:32:19 AM 10103
Acquisition Pa Source Type Focus Scan Begin Scan End	rameter ESI Not active 100 m/z 1000 m/z	lon Pola Set Cap Set End Set Colli	rity illary Plate Offset ision Cell RF	Positive 4000 V -500 V 200.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	r 0.4 er 180 4.0 Ilve Wa	Bar) °C I/min Iste
Intens. x10 ⁴	217.0473					+MS,	0.0-0.1min #(2-3)
6-							
5-				PhO 2a			
4-			ca fou	lcd. for C ₁₀ H ₁₀ (und 217.0473	O₄Na⁺ [M+Na]⁺: 2′	17.0471,	
3-							
2-							
1-				218.0507			
0 manual	216.5 217	0.0	217.5	218.0	218.5	219.0	۱۵۵۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰ m/z
Bruker Compas	s DataAnalysis 4.0		printed:	1/12/2018 10	0:34:04 AM	Pa	ge 1 of 1

HPLC copies of cyclic carbonates from APTC-1 catalyzed fixation of CO₂ with chiral epoxides

HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm.

HPLC copies of producs from the kinetic resolution of rac-epoxides by CO₂ with CPTCs

For epoxide 1g and 1g':

HPLC: Chiralpak AD-H (^{*i*}PrOH/*n*-Hexane) = 0.2:99.8, flow rate = 0.3 mL/min, 216 nm.

For cyclic carbonate **2g** and **2j**:

HPLC: Chiralpak OD-H (ⁱPrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For epoxide **1g** and **1g'**: HPLC: Chiralpak AD-H (*i*PrOH/*n*-Hexane) = 1:99, flow rate = 0.3 mL/min, 216 nm.

For cyclic carbonate 2g and 2j:

HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For epoxide: HPLC: Chiralpak AD-H (^{*i*}PrOH/*n*-Hexane) = 1:99, flow rate = 0.3 mL/min, 216 nm. For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For cyclic carbonate HPLC: Chiralpak OD-H (PrOH/n-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For cyclic carbonate HPLC: Chiralpak OD-H (PrOH/n-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For epoxide: HPLC: Chiralpak AD-H (^{*i*}PrOH/*n*-Hexane) = 1:99, flow rate = 0.3 mL/min, 216 nm. For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For cyclic carbonate HPLC: Chiralpak OD-H (*i*PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 5:95, flow rate = 1.0 mL/min, 216 nm.

For epoxide: HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm. For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For epoxide: HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm. For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm.

For cyclic carbonate HPLC: Chiralpak OD-H (PrOH/n-Hexane) = 20:80, flow rate = 1.0 mL/min, 216 nm

For epoxide: HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm. For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 216 nm.

For epoxide: HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm. For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 216 nm.

For epoxide: HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 254 nm. For cyclic carbonate HPLC: Chiralpak OD-H (^{*i*}PrOH/*n*-Hexane) = 10:90, flow rate = 1.0 mL/min, 216 nm.

