Supporting information

Electrochemical oxidative cyclization of activated alkynes with diselenides or disulfides: access to functionalized coumarins or quinolinones Jiawei Hua,^a Zheng Fang,^a Jia Xu,^a Mixue Bian,^a ChengKou Liu,^a Wei He,^a Ning Zhu,^a Zhao Yang,^b Kai Guo^{a,c,*}

^a College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China

^b College of Engineering China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, China

^c State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China

Table Of contents

1. General information	2
2. Experimental section	2
3. Screening of mixed solvents ^a	3
4. Optimization of reaction conditions of 1a with 3a ^a	4
5. X-ray crystallography structure of compound 4i	5
6. Cyclic voltammetry experiment	5
7. Analytical data of products 4, 5 , 7 ,8 , 10a	6
8. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	.23

1. General information

Unless otherwise indicated, all the regents and solvents were purchased from commercial suppliers and used without any further purification. 1H spectra were recorded in CDCl₃ on 400MHz NMR spectrometers and resonances (•) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, p = penta, dd = doublet of doublets, dt = doublet of triplets, ddt = doublet of doublet of triplets, dtd = doublet of triplet, p = penta, dd = doublet of triplet of doublets, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration. ¹³C NMR were recorded at 100 MHz and chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent. Column chromatography was generally performed on Silicycle silica gel (200-300 mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized the course of the reactions using a UV light (254 nm or 365 nm). High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrosprayionization-time of flight).

2. Experimental section

General procedure for the synthesis of product 4

A 50 mL vial was charged with substrate 1 (0.5 mmol), 2 (0.5 mmol, 1.0equiv.), $^{n}Bu_{4}NPF_{6}$ (1.0 mmol, 2equiv.), CH₃CN/HFIP (10 mL, v/v = 4/1) and a magnetic stir bar. The vial was equipped with platinum electrodes (1.5 cm×1.5 cm×0.1 mm) as cathode, graphite rod (Φ 6 mm) as the anode. The whole cell was undivided cell. The reaction mixture was stirred and electrolyzed at a constant current of 15mA at room temperature for 2 hours (2.2 F). After completing reaction, it was monitored with TLC. The solvent was removed with a rotary evaporator. The pure product **4** was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

General procedure for the synthesis of product 5

A 50 mL vial was charged with substrate **1** (0.5 mmol), **3** (0.5 mmol, 1.0equiv.), ⁿBu₄NPF₆ (1.0 mmol, 2equiv.), CH₃CN/HFIP (10 mL, v/v = 4/1) and a magnetic stir bar. The vial was equipped with platinum electrodes (1.5 cm×1.5 cm×0.1 mm) as cathode, graphite rod (Φ 6 mm) as the anode and was then flushed with nitrogen. The whole cell was undivided cell. The reaction mixture was stirred and electrolyzed at a constant current of 15mA at room temperature for 2 hours (2.2 F). After completing reaction, it was monitored with TLC. The solvent was removed with a rotary evaporator. The pure product **5** was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

General procedure for the synthesis of product 7

A 50 mL vial was charged with substrate **6** (0.5 mmol), **2** (0.5 mmol, 1.0equiv.), $^{n}Bu_{4}NPF_{6}$ (1.0 mmol, 2equiv.), CH₃CN/HFIP (10 mL, v/v = 4/1) and a magnetic stir bar.

The vial was equipped with platinum electrodes (1.5 cm×1.5 cm×0.1 mm) as cathode, graphite rod (Φ 6 mm) as the anode. The whole cell was undivided cell. The reaction mixture was stirred and electrolyzed at a constant current of 15mA at room temperature for 2 hours (2.2 F). After completing reaction, it was monitored with TLC. The solvent was removed with a rotary evaporator. The pure product **7** was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

General procedure for the synthesis of product 8

A 50 mL vial was charged with substrate **6** (0.5 mmol), **3** (0.5 mmol, 1.0equiv.), ⁿBu₄NPF₆ (1.0 mmol, 2equiv.), CH₃CN/HFIP (10 mL, v/v = 4/1) and a magnetic stir bar. The vial was equipped with platinum electrodes (1.5 cm×1.5 cm×0.1 mm) as cathode, graphite rod (Φ 6 mm) as the anode and was then flushed with nitrogen. The whole cell was undivided cell. The reaction mixture was stirred and electrolyzed at a constant current of 15mA at room temperature for 2 hours (2.2 F). After completing reaction, it was monitored with TLC. The solvent was removed with a rotary evaporator. The pure product **8** was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

	+ PhSeSePh	C(+)-Pt(-)	O SePh Ph	
1a 1	2a		4a	
Entry	Sol	vent	Yield ^b (%)	
1	CH ₃ CN/HFI	P (v/v = 4/1)	83	
2	CH₃CN/TFI	E (v/v = 4/1)	56	
3	CH ₃ CN/H ₂ C	D (v/v = 4/1)	0	
4	CH₃CN/CH₃C	DH (v/v = 4/1)	0	
5	CH₃CN/DC	E (v/v = 4/1)	49	
6	CH₃CN/HFI	P (v/v = 1/1)	69	
7	CH₃CN/HFI	P (v/v = 2/1)	73	
8	CH₃CN/HFI	P (v/v = 3/1)	78	
9	CH₃CN/HFI	P (v/v = 5/1)	70	

3. Screening of mixed solvents^a

^aReaction conditions: Pt plate cathode (15 mm × 15 mm × 0.1 mm) cathode, graphite rod anode (Φ 6 mm), constant current = 15 mA, **1a** (0.5 mmol), **2a** (0.5 mmol), ⁿBu₄NPF₆ (1 mmol), mixed solvents (10 mL), room temperature, 2h (2.2 F/mol), undivided cell. ^bIsolated yield.

	+ PhS	SPh C(+)-Pt(-)		-0
			❤ Ύ Ph	`SPh
	Ph 1a 3	3a	5a	
Entry	Solvent	Electrolyte (equiv.)	I (mA)	Yield ^b (%)
1	CH₃CN	ⁿ Bu₄NPF ₆	15	25
2	HFIP	ⁿ Bu ₄ NPF ₆	15	33
3	DCE	ⁿ Bu ₄ NPF ₆	15	15
4	CH₃CN/HFIP	ⁿ Bu ₄ NPF ₆	15	53
5	CH ₃ CN/TFE	ⁿ Bu ₄ NPF ₆	15	44
6	CH₃CN/DCE	ⁿ Bu ₄ NPF ₆	15	37
7	CH ₃ CN/H ₂ O	ⁿ Bu ₄ NPF ₆	15	0
8	CH₃CN/CH₃OH	ⁿ Bu ₄ NPF ₆	15	0
9	CH₃CN/HFIP	ⁿ Bu ₄ NBF ₄	15	49
10	CH ₃ CN/HFIP	ⁿ Bu₄NI	15	0
11	CH₃CN/HFIP	ⁿ Bu ₄ NBr	15	0
12	CH ₃ CN/HFIP	Et ₄ NClO ₄	15	45
13	CH₃CN/HFIP	ⁿ Bu ₄ NPF ₆	10	46
14	CH₃CN/HFIP	ⁿ Bu ₄ NPF ₆	20	50
15	CH₃CN/HFIP	ⁿ Bu ₄ NPF ₆	15	39 ^c
16	CH ₃ CN/HFIP	ⁿ Bu₄NPF ₆	15	45 ^d

4. Optimization of reaction conditions of 1a with 3a^a

^aReaction conditions: Pt plate cathode (15 mm × 15 mm × 0.1 mm) cathode, graphite rod anode (Φ 6 mm), **1a** (0.5 mmol), **3a** (0.5 mmol), solvent (10 mL, v/v = 4/1), electrolyte, constant current, room temperature, 2h, N₂, undivided cell. ^bIsolated yield. ^c0.5 equiv. of **3a**. ^d2 equiv. of **3a**.

5. X-ray crystallography structure of compound 4i

Figure S1. X-ray structure of 4i

6. Cyclic voltammetry experiment

Cyclic voltammograms of **1a**, **2a** and **3a** were performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a steady glassy carbon disk electrode while the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. (1) **1a** (0.5mmol) and a mixed solvent (MeCN/HFIP = 4/1, 10 mL) containing ⁿBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V. (2) **2a** (0.5mmol) and a mixed solvent (MeCN/HFIP = 4/1, 10 mL) containing ⁿBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V. (2) **2a** (0.5mmol) and a mixed solvent (MeCN/HFIP = 4/1, 10 mL) containing ⁿBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V. (3) **3a** (0.5mmol) and a mixed solvent (MeCN/HFIP = 4/1, 10 mL) containing ⁿBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V. (3) **3a** (0.5mmol) and a mixed solvent (MeCN/HFIP = 4/1, 10 mL) containing ⁿBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V.

7. Analytical data of products 4, 5, 7,8, 10a

4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4a)**. Yellow solid (83%, 0.157g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (ddd, *J* = 8.6, 7.3, 1.6 Hz, 1H), 7.38 (dd, *J* = 5.0, 1.7 Hz, 3H), 7.32 – 7.28 (m, 1H), 7.24 (dt, *J* = 6.6, 1.5 Hz, 2H), 7.14 – 7.03 (m, 6H), 6.98 (dd, *J* = 8.0, 1.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.52, 157.99, 152.44, 135.17, 131.78, 130.98, 129.26, 128.01, 127.84, 127.47, 127.21, 126.90, 126.39, 123.23, 119.71, 119.46, 115.77. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₅O₂Se 379.0232 found 379.0230.

6-methyl-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4b)**. Yellow solid (85%, 0.166g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (dd, J = 5.0, 1.7 Hz, 3H), 7.22 (ddd, J = 8.1, 3.9, 1.8 Hz, 3H), 7.17 (d, J = 8.4 Hz, 1H), 7.10 – 7.01 (m, 5H), 6.74 – 6.70 (m, 1H), 2.16 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.68, 158.10, 150.61, 135.29, 132.97, 132.04, 131.63, 129.41, 127.97, 127.77, 127.44, 127.16, 126.54, 126.28, 119.51, 119.12, 115.49, 19.86. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇O₂Se 393.0388 found 393.0385.

6-ethyl-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4c)**. Yellow solid (82%, 0.166g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, *J* = 5.0, 1.7 Hz, 3H), 7.28 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.25 – 7.20 (m, 3H), 7.12 – 7.03 (m, 5H), 6.75 (d, *J* = 1.8 Hz, 1H), 2.47 (q, *J* = 7.6 Hz, 2H), 1.04 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.71, 158.18, 150.80, 139.40, 135.33, 131.66, 130.88, 129.48, 127.98, 127.78, 127.43, 127.22, 126.28, 125.51, 119.51, 119.20, 115.64, 27.23, 14.66. HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{23}H_{19}O_2$ Se 407.0545 found 407.0549.

6-(tert-butyl)-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4d)**. Yellow solid (86%, 0.186g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.37 – 7.32 (m, 3H), 7.23 – 7.18 (m, 3H), 7.11 – 7.00 (m, 5H), 6.94 (d, *J* = 2.3 Hz, 1H), 1.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.77, 158.51, 150.50, 146.27, 135.19, 131.55, 129.49, 128.67, 127.95, 127.83, 127.34, 127.18, 126.22, 123.08, 119.21, 118.75, 115.26, 33.47, 30.12. HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{25}H_{23}O_2Se$ 435.0858 found 435.0860.

4-phenyl-3-(phenylselanyl)-6-(trifluoromethyl)-2H-chromen-2-one **(4e)**. Yellow solid (81%, 0.180g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.42 – 7.36 (m, 4H), 7.25 – 7.21 (m, 3H), 7.14 – 7.03 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.50, 156.19, 154.06, 134.16, 132.31, 128.56, 128.36, 128.09, 127.83, 127.31 (q, *J* = 4 Hz), 127.14, 126.76, 125.72 (q, *J* = 33 Hz), 124.03 (q, *J* = 4 Hz), 123.70, 121.97, 119.52, 116.62. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.05. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₄F₃O₂Se 447.0106 found 447.0104.

6-fluoro-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4f)**. Yellow solid (79%, 0.156g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.28 – 7.21 (m, 3H), 7.16 – 7.03 (m, 6H), 6.64 (dd, *J* = 9.0, 2.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.17, 157.61 (d, *J* = 236 Hz), 156.39 (d, *J* = 3 Hz), 148.47 (d, *J* = 2 Hz), 134.62, 132.17, 128.81, 128.11, 128.05, 127.68, 127.09, 126.61, 121.43, 120.34 (d, *J* = 9 Hz), 118.25 (d, *J* = 25 Hz), 117.25 (d, *J* = 9 Hz), 112.17 (d, *J* = 25 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.74. HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{21}H_{14}FO_2$ Se 397.0138 found 397.0142.

6-chloro-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4g)**. Yellow solid (80%, 0.165g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.32 (m, 4H), 7.23 – 7.18 (m, 3H), 7.12 – 7.02 (m, 5H), 6.91 (d, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.82, 156.13, 150.70, 134.43, 132.16, 130.74, 128.76, 128.61, 128.14, 128.04, 127.71, 127.10, 126.62, 125.90, 121.46, 120.52, 117.18. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₄ClO₂Se 412.9842 found 412.9837.

6-bromo-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4h)**. Yellow solid (84%, 0.192g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (dd, J = 8.8, 2.3 Hz, 1H), 7.38 (dd, J = 5.0, 1.9 Hz, 3H), 7.25 – 7.20 (m, 2H), 7.16 (d, J = 8.8 Hz, 1H), 7.13 – 7.03 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.78, 156.05, 151.19, 134.42, 133.59, 132.18, 128.91, 128.77, 128.16, 128.05, 127.73, 127.12, 126.64, 121.48, 121.00, 117.50, 116.02. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₄BrO₂Se 456.9337 found 456.9339.

6-acetyl-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4i)**. Yellow solid (80%, 0.192g). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (dd, J = 8.6, 2.1 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.39 (dd, J = 5.0, 1.9 Hz, 3H), 7.32 (d, J = 8.6 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.12 – 7.02 (m, 5H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.94, 157.63, 157.04, 155.10, 134.41, 132.30, 132.15, 130.54, 128.72, 128.29, 128.06, 127.72, 127.50, 127.17, 126.65, 121.01, 119.28, 116.15, 25.41. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₁₇O₃Se 421.0337 found 421.0341.

4-methyl-3-(phenylselanyl)-2H-chromen-2-one **(4k)**. Yellow solid (85%, 0.134g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.28 – 7.20 (m, 2H), 7.19 – 7.12 (m, 3H), 2.64 (s, 3H). ¹³C NMR (101

MHz, Chloroform-d) δ 158.51 , 155.89 , 151.93 , 131.17 , 130.56 , 129.57 , 128.33 , 126.22 , 124.54 , 123.42 , 119.12 , 118.89 , 115.97 , 19.57 . HRMS (TOF) m/z [M + H]^+ Calcd for $C_{16}H_{13}O_2Se$ 317.0075 found 317.0076.

4-ethyl-3-(phenylselanyl)-2H-chromen-2-one **(4I)**. Yellow solid (83%, 0.137g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.48 (ddd, *J* = 8.5, 7.3, 1.5 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.31 – 7.21 (m, 2H), 7.19 – 7.13 (m, 3H), 3.23 (q, *J* = 7.6 Hz, 2H), 1.18 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.56, 158.44, 152.65, 131.14, 130.58, 129.53, 128.28, 126.24, 124.47, 123.43, 117.90, 117.67, 116.32, 26.17, 12.92. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₇H₁₅O₂Se 331.0232 found 331.0236.

3-(phenylselanyl)-4-(p-tolyl)-2H-chromen-2-one **(4m)**. Yellow solid (80%, 0.157g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (ddd, *J* = 8.6, 6.8, 2.1 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.15 (d, *J* = 7.8 Hz, 2H), 7.08 – 6.95 (m, 7H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.42, 158.13, 152.40, 137.83, 132.25, 131.68, 130.89, 129.36, 128.11, 127.92, 127.17, 126.98, 126.29, 123.17, 119.54, 115.67, 20.40. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇O₂Se 393.0388 found 393.0384.

4-(4-methoxyphenyl)-3-(phenylselanyl)-2H-chromen-2-one **(4n)**. Yellow solid (79%, 0.161g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (ddd, *J* = 8.6, 5.6, 3.2 Hz, 1H), 7.30 – 7.22 (m, 3H), 7.12 – 7.01 (m, 7H), 6.91 – 6.86 (m, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.99, 158.54, 157.72, 152.44, 131.70, 130.86, 129.45, 128.82, 127.96, 127.41, 126.95, 126.33, 123.17, 119.87, 119.70, 115.76, 112.86, 54.33 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇O₃Se 409.0337 found 409.0339.

4-(4-fluorophenyl)-3-(phenylselanyl)-2H-chromen-2-one **(40)**. Yellow solid (80%, 0.158g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (ddd, *J* = 8.6, 7.4, 1.5 Hz, 1H), 7.29 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.23 – 7.18 (m, 2H), 7.13 – 6.99 (m, 8H), 6.95 (dd, *J* = 8.0, 1.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.77 (d, *J* = 248 Hz), 158.45, 156.61, 152.35, 131.95, 131.06, 130.95 (d, *J* = 3 Hz), 129.30, 129.22, 129.11, 128.04, 126.52 (d, *J* = 2 Hz), 123.33, 120.48, 119.40, 115.85, 114.63 (d, *J* = 22 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.80. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₄FO₂Se 397.0138 found 397.0143.

4-(4-chlorophenyl)-3-(phenylselanyl)-2H-chromen-2-one **(4p)**. Yellow solid (82%, 0.169g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (ddd, *J* = 8.6, 7.4, 1.5 Hz, 1H), 7.27 (td, *J* = 6.7, 1.3 Hz, 3H), 7.20 – 7.16 (m, 2H), 7.12 – 6.96 (m, 6H), 6.92 (dd, *J* = 8.0, 1.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.37 , 156.27 , 152.29 , 133.87 , 133.28 , 132.02 , 131.10 , 128.97 , 128.69 , 128.03 , 127.73 , 126.55 , 126.38 , 123.36 , 120.34 , 119.15 , 115.83 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₄ClO₂Se 412.9842 found 412.9837.

4-(4-bromophenyl)-3-(phenylselanyl)-2H-chromen-2-one **(4q)**. Yellow solid (83%, 0.189g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (td, J = 7.8, 7.3, 1.7 Hz, 3H), 7.31 – 7.27 (m, 1H), 7.20 (dd, J = 8.1, 1.2 Hz, 2H), 7.15 – 7.03 (m, 4H), 6.93 (d, J = 8.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.39 , 156.20 , 152.34 , 133.78 , 132.12 , 131.10 , 130.70 , 128.95 , 128.05 , 126.59 , 126.37 , 123.36 , 122.13 , 120.38 , 119.12 , 115.88 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₄BrO₂Se 456.9337 found 456.9330.

3-(phenylselanyl)-4-(thiophen-2-yl)-2H-chromen-2-one **(4r)**. Yellow solid (50%, 0.096g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (ddd, *J* = 8.8, 6.2, 1.3 Hz, 2H), 7.33 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.29 – 7.22 (m, 2H), 7.14 – 7.07 (m, 4H), 7.05 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.91 (dd, *J* = 3.5, 1.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.87, 152.05, 150.73, 134.62, 132.04, 131.03, 128.95, 128.22, 128.05, 126.69, 126.61, 126.24, 123.36, 122.77, 119.71, 115.71. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₉H₁₃O₂SSe 384.9796 found 384.9792.

7-methyl-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4s1)**, 5-methyl-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one, **(4s2)**. Yellow solid (85%, 0.166g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (tt, *J* = 5.2, 3.0 Hz, 3H), 7.29 – 7.20 (m, 2H), 7.12 – 7.02 (m, 6H), 6.91 – 6.82 (m, 2H), 2.33 (s, 2H), 1.63 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.79 , 158.48 , 158.40 , 157.70 , 153.43 , 152.55 , 142.49 , 139.42 , 136.88 , 135.33 , 131.51 , 131.33 , 130.43 , 129.75 , 129.53 , 127.99 , 127.97 , 127.75 , 127.70 , 127.60 , 127.38 , 127.17 , 126.77 , 126.67 , 126.28 , 126.22 , 124.44 , 121.11 , 118.00 , 117.53 , 117.09 , 115.85 , 114.55 , 22.26 , 20.64 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇O₂Se 393.0388 found 393.0383.

8-methyl-4-phenyl-3-(phenylselanyl)-2H-chromen-2-one **(4t)**. Yellow solid (75%, 0.147g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (dd, *J* = 5.0, 1.8 Hz, 3H), 7.30 – 7.21 (m, 3H), 7.11 – 7.02 (m, 5H), 6.94 (t, *J* = 7.7 Hz, 1H), 6.82 – 6.77 (m, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.56 , 158.40 , 150.81 , 135.56 , 132.30 , 131.78 , 129.41 , 127.97 , 127.72 , 127.38 , 127.21 , 126.32 , 125.19 , 124.71 , 122.69 , 119.29 , 119.24 , 14.56 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇O₂Se 393.0388 found 393.0382.

3-(methylselanyl)-4-phenyl-2H-chromen-2-one (**4u**). Yellow solid (80%, 0.126g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.37 (m, 4H), 7.27 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.20 – 7.16 (m, 2H), 7.05 (td, *J* = 7.7, 7.3, 1.2 Hz, 1H), 6.95 (dd, *J* = 8.0, 1.5 Hz, 1H), 2.15 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.33 , 154.89 , 151.90 , 135.29 , 130.23 , 128.04 , 127.68 , 127.26 , 126.20 , 123.18 , 119.43 , 119.14 , 115.58 , 7.37 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₃O₂Se 317.0075 found 317.0078.

3-(ethylselanyl)-4-phenyl-2H-chromen-2-one **(4v)**. Yellow solid (78%, 0.128g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.39 (m, 4H), 7.30 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.20 – 7.15 (m, 2H), 7.07 (ddd, *J* = 8.3, 7.3, 1.2 Hz, 1H), 6.95 (dd, *J* = 8.0, 1.5 Hz, 1H), 2.90 (q, *J* = 7.5 Hz, 2H), 1.21 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.53, 156.08, 152.04, 135.57, 130.29, 127.92, 127.63, 127.31, 126.36, 123.18, 119.55, 118.30, 115.62, 20.45, 14.65. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₇H₁₅O₂Se 331.0232 found 331.0235.

4-phenyl-3-(p-tolylselanyl)-2H-chromen-2-one **(4w)**. Yellow solid (81%, 0.158g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.33 (m, 4H), 7.24 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.15 – 7.12 (m, 2H), 7.09 – 7.05 (m, 2H), 7.02 (td, *J* = 7.7, 7.2, 1.2 Hz, 1H), 6.94 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.86 (d, *J* = 7.9 Hz, 2H), 2.16 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.44 , 157.45 , 152.37 , 136.50 , 132.30 , 130.82 , 128.79 , 127.79 , 127.43 , 127.26 , 126.81 , 125.37 , 123.17 , 120.06 , 119.50 , 115.68 , 20.09 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇O₂Se 393.0388 found 393.0387.

6-(tert-butyl)-3-((3-methoxyphenyl)selanyl)-4-phenyl-2H-chromen-2-one **(4x)**. Yellow solid (80%, 0.185g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.38 (dd, *J* = 5.0, 1.7 Hz, 3H), 7.25 (d, *J* = 8.7 Hz, 1H), 7.11 (dd, *J* = 6.5, 3.1 Hz, 2H), 6.98 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 2.3 Hz, 1H), 6.81 (dt, *J* = 7.7, 1.1 Hz, 1H), 6.76 (dd, *J* = 2.4, 1.6 Hz, 1H), 6.64 (ddd, *J* = 8.3, 2.5, 0.8 Hz, 1H), 3.65 (s, 3H), 1.11 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.87, 158.67, 158.57, 150.56, 146.32, 135.24, 130.48, 128.72, 128.70, 127.80, 127.31, 127.25, 123.76, 123.13, 119.15, 118.80, 116.83, 115.32, 112.18, 54.21, 33.52, 30.14. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₆H₂₅O₃Se 465.0963 found 465.0960.

4-(p-tolyl)-3-(o-tolylselanyl)-2H-chromen-2-one **(4y)**. Yellow solid (84%, 0.170g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (ddd, *J* = 8.6, 7.0, 1.8 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.12 (t, *J* = 8.7 Hz, 3H), 7.09 – 6.95 (m, 6H), 6.86 (td, *J* = 7.0, 6.6, 2.4 Hz, 1H), 2.33 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.31 , 157.89 , 152.37 , 138.24 , 137.80 , 132.09 , 131.69 , 130.77 , 130.42 , 128.91 , 128.06 , 126.98 , 126.80 , 126.41 , 125.35 , 123.14 , 119.60 , 119.42 , 115.73 , 21.29 , 20.38 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₁₉O₂Se 407.0545 found 407.0549.

3-((4-bromophenyl)selanyl)-6-chloro-4-phenyl-2H-chromen-2-one **(4z)**. Yellow solid (78%, 0.191g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.37 (m, 4H), 7.24 (d, *J* = 8.8 Hz, 1H), 7.18 (d, *J* = 2.3 Hz, 2H), 7.12 – 7.05 (m, 4H), 6.93 (d, *J* = 2.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.75 , 156.17 , 150.72 , 134.32 , 133.99 , 131.13 , 130.94 , 128.78 , 128.32 , 127.81 , 127.42 , 127.09 , 125.94 , 121.21 , 121.16 , 120.46 , 117.25 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₃BrClO₂Se 490.8947 found 490.8945.

4-phenyl-3-(phenylselanyl)-2H-benzo[g]chromen-2-one **(4za)**. Yellow solid (75%, 0.160g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 8.9 Hz, 1H), 7.75 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.50 – 7.41 (m, 4H), 7.33 – 7.27 (m, 3H), 7.18 – 7.15 (m, 2H), 7.12 (dd, *J* = 5.1, 1.9 Hz, 3H), 7.02 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 6.91 (d, *J* = 8.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.04 , 157.91 , 153.28 , 139.58 , 133.41 , 131.41 , 130.45 , 129.71 , 128.53 , 128.19 , 128.04 , 126.89 , 126.36 , 126.13 , 124.55 , 124.32 , 116.26 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₅H₁₇O₂Se 429.0388 found 429.0385.

4-phenyl-3-(phenylthio)-2H-chromen-2-one **(5a)**. Yellow solid (53%, 0.088g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (ddd, *J* = 8.7, 7.2, 1.6 Hz, 1H), 7.44 – 7.40 (m, 3H), 7.34 – 7.31 (m, 1H), 7.18 (d, *J* = 1.7 Hz, 3H), 7.14 – 7.09 (m, 5H), 7.03 (dd, *J* = 8.0, 1.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.19 , 157.94 , 152.36 , 133.90 , 133.85 , 131.18 , 128.30 , 128.02 , 127.93 , 127.52 , 127.28 , 127.15 , 125.70 , 123.32 , 120.84 , 119.49 , 115.85 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₅O₂S 331.0787 found 331.0789.

6-methyl-4-phenyl-3-(p-tolylthio)-2H-chromen-2-one **(5b)**. Yellow solid (55%, 0.098g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.40 (m, 3H), 7.25 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.20 – 7.14 (m, 3H), 7.05 – 7.01 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.76 (s, 1H), 2.20 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.39, 157.42, 150.47, 135.77, 134.09, 133.00, 132.07, 130.26, 128.78, 128.68, 127.88, 127.47, 127.33, 126.70, 121.22, 119.22, 115.56, 20.03, 19.88. HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{23}H_{19}O_2S$ 359.1100 found 359.1108.

6-chloro-3-((4-chlorophenyl)thio)-4-phenyl-2H-chromen-2-one **(5c)**. Yellow solid (56%, 0.112g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.42 (m, 3H), 7.39 (dd, J = 8.8, 2.5 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 7.17 – 7.13 (m, 2H), 7.10 – 7.03 (m, 4H), 6.96 (d, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.35 , 156.17 , 150.62 , 133.04 , 132.26 , 131.68 , 131.13 , 130.36 , 128.88 , 128.47 , 128.12 , 127.84 , 127.18 , 126.21 , 122.29 , 120.49 , 117.30 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₁H₁₃Cl₂O₂S 399.0008 found 399.0004.

1-methyl-4-phenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7a)**. Yellow solid (85%, 0.166g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.31 – 7.26 (m, 4H), 7.19 – 7.14 (m, 2H), 7.07 – 6.95 (m, 7H), 3.71 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.49 , 153.96 , 138.80 , 136.95 , 131.10 , 130.69 , 129.83 , 127.75 , 127.63 , 127.19 , 127.00 , 125.62 , 125.10 , 120.99 , 120.41 , 113.14 , 29.82 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₈NOSe 392.0548 found 392.0549.

1,6-dimethyl-4-phenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7b)**. Yellow solid (86%, 0.174g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.26 (m, 4H), 7.21 (d, *J* = 8.6 Hz, 1H), 7.19 – 7.16 (m, 2H), 7.06 – 6.97 (m, 5H), 6.83 (s, 1H), 3.71 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.42 , 153.84 , 137.14 , 136.97 , 131.07 , 130.90 , 130.54 , 127.74 , 127.67 , 127.30 , 127.19 , 126.97 , 125.56 , 125.13 , 120.37 , 113.09 , 29.83 , 19.69 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀NOSe 406.0705 found 406.0709.

6-chloro-1-methyl-4-phenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7c)**. Yellow solid (81%, 0.172g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.30 (dd, *J* = 5.0, 1.8 Hz, 3H), 7.24 (d, *J* = 9.0 Hz, 1H), 7.17 (dt, *J* = 6.6, 1.5 Hz, 2H), 7.07 – 6.97 (m, 6H), 3.69 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.17, 152.27, 137.26, 136.18, 131.57, 130.20, 129.61, 127.80, 127.59, 127.45, 127.33, 127.10, 126.58, 126.49, 125.89, 121.53, 114.61, 29.98. HRMS (TOF) m/z [M + H]⁺ Calcd for

C₂₂H₁₇CINOSe 426.0158 found 426.0152.

1-methyl-4-phenyl-3-(phenylselanyl)-6-(trifluoromethyl)quinolin-2(1H)-one (7d). Yellow solid (79%, 0.181g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (dd, J = 8.9, 1.8 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 7.33 (dd, J = 5.0, 1.9 Hz, 4H), 7.21 – 7.16 (m, 2H), 7.10 – 6.99 (m, 5H), 3.75 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.44 , 152.85 , 140.67 , 135.89 , 131.71 , 130.02 , 127.86 , 127.61 , 127.54 , 127.47 , 126.03 , 125.92 (q, J = 3 Hz), 124.70 (q, J = 3 Hz) , 124.13 , 123.22 (q, J = 33 Hz), 121.43 , 120.19 , 113.74 , 30.06 . ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -61.89 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₁₇F₃NOSe 460.0422 found 460.0428.

1,7-dimethyl-4-phenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7e1)**, 1,5-dimethyl-4-phenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7e2)**. Yellow solid (82%, 0.166g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.15 (m, 6H), 7.10 – 6.91 (m, 6H), 6.83 (dd, *J* = 18.8, 8.2 Hz, 1H), 3.71 (s, 2H), 3.69 (s, 1H), 2.39 (s, 2H), 1.67 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.72, 158.78, 154.31, 154.23, 141.37, 140.72, 140.13, 139.02, 137.28, 137.18, 131.52, 130.99, 130.91, 130.38, 129.34, 127.76, 127.73, 127.64, 127.61, 127.13, 127.00, 126.95, 126.59, 125.96, 125.50, 125.45, 123.54, 122.35, 118.68, 118.33, 113.36, 112.16, 30.77, 29.79, 23.61, 21.08. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀NOSe 406.0705 found 406.0700.

1-ethyl-4-methyl-3-(phenylselanyl)quinolin-2(1H)-one (**7g**). Yellow solid (80%, 0.137g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.57 (ddd, *J* = 8.6, 7.2, 1.5 Hz, 1H), 7.42 – 7.36 (m, 3H), 7.26 – 7.14 (m, 4H), 4.39 (q, *J* = 7.1 Hz, 2H), 2.70 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.04 , 150.96 , 138.47 , 132.14 , 130.95 , 130.89 , 129.14 , 126.50 , 126.42 , 122.00 , 121.38 , 114.31 , 38.54 , 21.06 , 12.77 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₈NOSe 344.0548 found 344.0549.

4-ethyl-1-methyl-3-(phenylselanyl)quinolin-2(1H)-one (**7h**). Yellow solid (82%, 0.140g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.50 (ddd, *J* = 8.5, 7.2, 1.4 Hz, 1H), 7.36 – 7.26 (m, 3H), 7.21 – 7.16 (m, 1H), 7.13 – 7.04 (m, 3H), 3.65 (s, 3H), 3.29 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.50, 156.56, 139.21, 131.04, 129.97, 129.67, 128.05, 125.43, 125.22, 123.56, 121.18, 118.58, 113.67, 29.82, 26.48, 13.44. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₈NOSe 344.0548 found 344.0544.

1-methyl-3-(phenylselanyl)-4-(p-tolyl)quinolin-2(1H)-one **(7i)**. Yellow solid (84%, 0.170g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (ddd, *J* = 8.5, 7.2, 1.5 Hz, 1H), 7.27 (d, *J* = 8.3 Hz, 1H), 7.18 (dd, *J* = 7.5, 1.9 Hz, 2H), 7.11 – 7.06 (m, 3H), 7.02 – 6.90 (m, 6H), 3.68 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.49, 154.13, 138.79, 136.79, 134.07, 131.05, 130.77, 129.76, 127.88, 127.75, 127.67, 127.57, 125.56, 125.06, 120.95, 120.57, 113.10, 29.78, 20.35. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀NOSe 406.0705 found 406.0708.

4-(4-methoxyphenyl)-1-methyl-3-(phenylselanyl)quinolin-2(1H)-one **(7j)**. Yellow solid (80%, 0.168g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (ddd, *J* = 8.6, 7.1, 1.5 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.16 (ddd, *J* = 18.3, 7.7, 1.5 Hz, 3H), 7.04 – 6.94 (m, 6H), 6.83 – 6.79 (m, 2H), 3.76 (s, 3H), 3.71 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.57, 158.30, 153.64, 138.80, 131.15, 130.83, 129.73, 129.28, 129.04, 127.70, 125.61, 120.95, 120.78, 113.12, 112.62, 54.25, 29.78. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀NO₂Se 422.0654 found 422.0657.

4-(4-fluorophenyl)-1-methyl-3-(phenylselanyl)quinolin-2(1H)-one **(7k)**. Yellow solid (78%, 0.159g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (ddd, *J* = 8.6, 6.6, 2.1 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.16 (dd, *J* = 8.1, 1.4 Hz, 2H), 7.09 – 6.93 (m, 9H), 3.75 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.34 (d, *J* = 246 Hz), 159.55, 152.47, 138.75, 132.68 (d, *J* = 4 Hz), 131.48, 130.50, 129.86, 129.58 (d, *J* = 8 Hz), 127.80, 127.25, 126.14, 125.84, 121.10, 120.50, 114.28 (d, *J* = 22 Hz), 113.25, 29.84. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.39. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇FNOSe 410.0454 found 410.0455.

4-(4-chlorophenyl)-1-methyl-3-(phenylselanyl)quinolin-2(1H)-one **(7l)**. Yellow solid (82%, 0.174g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (ddd, *J* = 8.6, 6.0, 2.6 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.18 – 7.13 (m, 2H), 7.10 – 6.99 (m, 5H), 6.97 – 6.93 (m, 2H), 3.76 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.51, 152.06, 138.73, 135.07, 133.02, 131.65, 130.36, 129.87, 129.19, 127.80, 127.46, 127.11, 126.06, 125.90, 121.12, 120.27, 113.27, 29.84. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇CINOSe 426.0158 found 426.0162.

4-(4-bromophenyl)-1-methyl-3-(phenylselanyl)quinolin-2(1H)-one **(7m)**. Yellow solid (83%, 0.195g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (ddd, *J* = 8.6, 6.0, 2.6 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.17 – 7.13 (m, 2H), 7.10 – 6.99 (m, 5H), 6.91 – 6.86 (m, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.50, 151.97, 138.72, 135.53, 131.71, 130.40, 130.33, 129.87, 129.47, 127.81, 127.08, 126.03, 125.91, 121.24, 121.13, 120.19, 113.27, 29.83. HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{22}H_{17}BrNOSe$ 469.9653 found 469.9657.

1,6-dimethyl-3-(methylselanyl)-4-phenylquinolin-2(1H)-one **(7n)**. Yellow solid (84%, 0.144g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.38 (m, 3H), 7.25 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.21 – 7.14 (m, 3H), 6.80 (s, 1H), 3.72 (s, 3H), 2.17 (s, 3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.53 , 150.74 , 137.26 , 136.25 , 130.47 , 130.31 , 127.87 , 127.43 , 127.19 , 126.60 , 124.61 , 120.35 , 112.99 , 29.49 , 19.73 , 7.18 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₈NOSe 344.0548 found 344.0545.

3-(ethylselanyl)-1,6-dimethyl-4-phenylquinolin-2(1H)-one (**7o**). Yellow solid (80%, 0.143g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (dtd, *J* = 6.8, 5.4, 2.1 Hz, 3H), 7.28 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 1H), 7.16 – 7.13 (m, 2H), 6.81 (s, 1H), 3.75 (s, 3H), 2.84 (q, *J* = 7.5 Hz, 2H), 2.19 (s, 3H), 1.17 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.75, 153.10, 138.66, 137.46, 131.51, 131.42, 128.93, 128.42, 128.12, 127.89, 124.64, 121.49, 114.04, 30.61, 21.10, 20.76, 15.79. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₉H₂₀NOSe 358.0705 found 358.0706.

6-chloro-3-((3-methoxyphenyl)selanyl)-1-methyl-4-phenylquinolin-2(1H)-one (**7p**). Yellow solid (73%, 0.166g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (dd, J = 9.0, 2.4 Hz, 1H), 7.32 (dd, J = 5.0, 2.0 Hz, 3H), 7.27 (d, J = 9.0 Hz, 1H), 7.05 – 7.00 (m, 3H), 6.97 – 6.92 (m, 1H), 6.77 (dt, J = 7.7, 1.2 Hz, 1H), 6.69 (dd, J = 2.4, 1.6 Hz, 1H), 6.61 (ddd, J = 8.3, 2.5, 0.8 Hz, 1H), 3.73 (s, 3H), 3.63 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.40, 129.66, 128.53, 127.64, 127.41, 127.29, 126.52, 123.80, 121.58, 116.81, 114.60, 111.74, 54.13, 30.00. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₁₉ClNO₂Se 456.0264 found 456.0269.

6-chloro-1-methyl-4-phenyl-3-(p-tolylselanyl)quinolin-2(1H)-one **(7q)**. Yellow solid (81%, 0.178g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.33 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.24 (d, *J* = 9.0 Hz, 1H), 7.10 (d, *J* = 8.1 Hz, 2H), 7.06 – 6.99 (m, 3H), 6.84 (d, *J* = 7.9 Hz, 2H), 3.70 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.23 , 151.89 , 137.21 , 136.29 , 135.94 , 132.00 , 129.49 , 128.65 , 127.67 , 127.43 , 127.31 , 126.56 , 126.48 , 121.62 , 114.55 , 29.98 , 20.10 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₁₉CINOSe 440.0315 found 440.0316.

1-ethyl-4-phenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7r)**. Yellow solid (86%, 0.174g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.37 – 7.29 (m, 4H), 7.19 (dt, *J* = 8.5, 1.8 Hz, 2H), 7.11 – 6.96 (m, 7H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.93, 153.74, 137.85, 137.08, 131.21, 130.71, 129.73, 127.92, 127.74, 127.69, 127.23, 127.01, 125.63, 125.40, 120.76, 120.44, 113.00, 37.67, 11.65. HRMS (TOF) m/z [M + H]⁺ Calcd for $C_{23}H_{20}$ NOSe 406.0705 found 406.0709.

1-benzyl-4-phenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7s)**. Yellow solid (78%, 0.182g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.29 (m, 4H), 7.26 – 7.12 (m, 8H), 7.12 – 7.00 (m, 6H), 6.94 (t, *J* = 7.9 Hz, 1H), 5.54 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.63 , 154.45 , 138.27 , 137.01 , 135.31 , 131.12 , 130.78 , 129.77 , 127.78 , 127.73 , 127.69 , 127.27 , 127.12 , 126.28 , 125.85 , 125.69 , 125.29 , 121.07 , 120.70 , 113.93 , 46.26 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₈H₂₂NOSe 468.0861 found 468.0869.

1,4-diphenyl-3-(phenylselanyl)quinolin-2(1H)-one **(7t)**. Yellow solid (76%, 0.172g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (t, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.37 – 7.32 (m, 3H), 7.26 – 7.22 (m, 4H), 7.17 – 6.94 (m, 8H), 6.62 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.50 , 155.55 , 141.00 , 138.08 , 132.77 , 131.41 , 130.32 , 130.19 , 128.90 , 128.86 , 128.80 , 128.73 , 128.35 , 128.32 , 128.16 , 126.93 , 126.86 , 122.22 , 121.28 , 116.06 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₇H₂₀NOSe 454.0705 found 454.0708.

1-methyl-4-phenyl-3-(phenylthio)quinolin-2(1H)-one **(8a)**. Yellow solid (55%, 0.094g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.40 – 7.34 (m, 4H), 7.16 – 7.11 (m, 3H), 7.10 – 7.01 (m, 6H), 3.73 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.30, 154.43, 138.90, 135.80, 135.53, 130.11, 127.98, 127.69, 127.60, 127.40, 127.30, 127.23, 124.96, 124.87, 121.10, 120.33, 113.20, 29.73. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₈NOS 344.1104 found 344.1105.

1-methyl-4-phenyl-3-(p-tolylthio)quinolin-2(1H)-one **(8b)**. Yellow solid (57%, 0.102g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.41 – 7.32 (m, 4H), 7.17 – 7.10 (m, 3H), 7.07 – 6.98 (m, 3H), 6.90 (d, *J* = 8.0 Hz, 2H), 3.72 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.29, 153.86, 138.81, 135.90, 134.85, 131.74, 129.94, 128.51, 127.90, 127.68, 127.29, 127.18, 125.50, 121.05, 120.37, 113.16, 29.69, 20.02. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀NOS 358.1260 found 358.1257.

6-chloro-3-((4-chlorophenyl)thio)-1-methyl-4-phenylquinolin-2(1H)-one **(8c)**. Yellow solid (58%, 0.120g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.42 – 7.39 (m, 3H), 7.28 (d, *J* = 9.0 Hz, 1H), 7.13 – 7.09 (m, 2H), 7.07 – 6.99 (m, 5H), 3.70 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.78, 152.92, 137.35, 134.96, 133.47, 131.25, 130.14, 129.30, 127.89, 127.71, 127.63, 127.51, 126.90, 126.53, 121.35, 114.72, 29.91. HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₆Cl₂NOS 412.0324 found 412.0327.

S-phenyl benzenesulfonothioate **(10a)**. Yellow liquid. ¹H NMR (400 MHz, Chloroformd) δ 7.53 – 7.46 (m, 3H), 7.42 – 7.37 (m, 1H), 7.34 (td, J = 7.2, 1.9 Hz, 2H), 7.26 (qd, J = 6.2, 1.8 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 141.88 , 135.56 , 132.63 , 130.41 , 128.42 , 127.78 , 126.78 , 126.52 . HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₁O₂S₂ 251.0195 found 251.0199.

8. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

HJW-4FBENFEN-QSZ-CHUNCPD. 7. 1. 1r

Product 5c

-0.00

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

-0.00

