Supporting Information

Improving the Performance of Supported Ionic Liquid Phase (SILP) catalysts for the Ultra-Low-Temperature Water-Gas Shift Reaction Using Metal Salt Additives

Patrick Wolf¹, Manfred Aubermann¹, Moritz Wolf¹, Tanja Bauer², Dominik Blaumeiser², Robert Stepic^{3,4}, Christian R. Wick³, David M. Smith⁴, Ana-Sunčana Smith^{3,4}, Peter Wasserscheid¹, Jörg Libuda², and Marco Haumann^{1*}

¹Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany

²Lehrstuhl für Katalytische Grenzflächenforschung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany

³PULS Gruppe, Department Physik and Interdisziplinäres Zentrum für Nanostrukturierte Filme IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058 Erlangen, Germany

⁴Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

Corresponding author: marco.haumann@fau.de

Chemisorption

Figure S1. Exemplary pulse chemisorption experiment with a benchmark SILP catalyst system (no dopants added), TCD signal of eluting CO plotted over time, T=130 °C, $V_{He} = 20 \text{ ml}_{\text{N}} \text{ min}^{-1}$, $V_{CO \ pulses} = 0.5 \text{ ml}_{\text{N}}$, $m_{\text{sample}} = 0.312 \text{ g}$.

Figure S2. Weight change relative to the mass of dry SILP catalysts with various molarities of additive CuCl as observed during CO chemisorption experiments at 130 °C and 1 bar in a XEMIS sorption analyzer. Ru-dimer added to ionic liquid.

Figure S3. Weight change relative to the mass of dry SILP with various molarities of additive CuCl as observed during CO chemisorption experiments at 130 °C and 1 bar in a XEMIS sorption analyzer. No Ru-dimer added to ionic liquid.

Figure S4. Fraction of adsorbed water relative to the mass of the dry SILP catalysts as a function of the molarity of the additive CuCl in the ionic liquid as obtained by means of high-resolution thermogravimetry in a XEMIS sorption analyzer (circles) with a second order polynomial fit (dashed).

Continuous gas-phase reactor setup

Figure S5. Flow scheme of the continuous fixed-bed reactor for the catalytic evaluation of the different samples. Red: gas dosing and mixing section, blue: upstream section, yellow: fixed-bed reactor, green: downstream/bypass section, purple: pressure regulation.

DRIFTS setup

Figure S6. Selected parts of the DRIFTS setup.