Supporting Information for

Photoinduced hydroxylation of arylboronic acids with molecular oxygen under photocatalyst-free conditions

Yu-Ting Xu, Chen-Yuan Li, Xiao-Bo Huang, Wen-Xia Gao, Yun-Bing Zhou,* Miao-Chang Liu* and Hua-Yue Wu

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China. E-mail: zyb@wzu.edu.cn; mcl@wzu.edu.cn

Table of Contents

1.General Information	S1
2.Experimental Section	S2
2.1 Optimization of Reaction Conditions ^a	S2
2.2 General Procedure for Synthesis of Phenols	
3. ¹⁸ O-Labeling Experiments	S4
4.Controlled Experiment	
5. Characterization of Products in Details	S7
6.NMR spectra	S20

1. General Information

Unless otherwise noted, all materials were obtained from commercial suppliers (TCI, Sigma-Aldrich, Alfa Aesar, Acros and Meryer) and used without further purification. All reactions were conducted using standard Schlenk techniques. A 15W UV lamp was used for photoirradiation. Column chromatography was performed using EM silica gel 60 (300–400 mesh). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were measured on a 500 MHz Bruker AVANCE spectrometer (500 MHz for ¹H, 125 MHz for ¹³C and 470 MHz for ¹⁹F), or 400 MHz Zhongke-Niujin spectrometer (400 MHz for ¹H and 100 MHz for ¹³C), using DMSO-*d*₆ or CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts δ were given in ppm, the coupling constants *J* were given in Hz. Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet. ¹H NMR spectra were referenced to DMSO-*d*₆ (39.5 ppm) or CDCl₃ (77.0 ppm). Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and Agilent 7890A/5975C.

2. Experimental Section

		O ₂ light, additive solvent, rt	\rightarrow	— <mark>О</mark> Н
	1a		1b	
entry	light source	additive	solvent	Yield(%)
1	UV lamp		DMF	23
2	UV lamp	Et ₃ N	DMF	87
3	UV lamp	Et ₃ N	dioxane	40
4	UV lamp	Et ₃ N	THF	53
5	UV lamp	Et ₃ N	CH ₃ CN	77
6	UV lamp	Et ₃ N	toluene	41
7	UV lamp	Et ₃ N	DCM	23
8	UV lamp	Et ₃ N	DMSO	33
9	UV lamp	Et ₃ N	2-MeTHF	92
10	UV lamp	DIPEA	2-MeTHF	82
11	UV lamp	(Me) ₂ EtN	2-MeTHF	83
12	UV lamp	$(Me)_2^n BuN$	2-MeTHF	65
13 ^b	UV lamp	Et ₃ N	2-MeTHF	58
14^{c}	UV lamp	Et ₃ N	2-MeTHF	0
15	filament lamp	Et ₃ N	2-MeTHF	10
16	green LED	Et ₃ N	2-MeTHF	83
17	blue LED	Et ₃ N	2-MeTHF	80
18	dark	Et ₃ N	2-MeTHF	trace

2.1 Optimization of Reaction Conditions^a

^{*a*}Reaction conditions: **1a** (0.3 mmol), O_2 (1 atm), light source (15 W), addition (0.45 mmol), solvent (4 mL), rt, 24 h, isolated yields. ^{*b*}Under the air atmosphere. ^{*c*}Under the N₂ atmosphere.

2.2 General Procedure for Synthesis of Phenols

An oven-dried 20 mL quarz test tube equipped with a magnetic stir bar was charged with [1,1'-biphenyl]-4-ylboronic acid (59.4 mg, 0.3 mmol, 1.0 equiv),and the quartz test tube was evacuated and backfilled with O_2 three times. Under O_2 , Et₃N (62.5 µL, 0.45 mmol, 1.5 equiv) and 2-MeTHF (4 mL) were added in turn via syringe. The resulting mixture was stirred for 5 minutes, and then the quartz test tube transferred to photoreactor. The tube was placed approximately 2 cm from a 15 W UV lamp. The reaction mixture was stirred and irradiated for 24 h. After the indicated time period, the crude product was diluted with ethyl ether, filtered through a pad of silica gel and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel (EtOAc/PE = 1/10) directly to give the desired product 1b (92% yield, white solid).

3. ¹⁸O-Labeling Experiments

An oven-dried 20 mL quarz test tube equipped with a magnetic stir bar was charged with [1,1'-biphenyl]-4-ylboronic acid (59.4 mg, 0.3 mmol, 1.0 equiv),and the quartz test tube was evacuated and backfilled with ${}^{18}O_2$ three times. Under ${}^{18}O_2$, Et₃N (62.5 μ L, 0.45 mmol, 1.5 equiv) and 2-MeTHF (4 mL) were added in turn via syringe. The resulting mixture was stirred for 5 minutes, and then the quartz test tube was transferred to photoreactor. The tube was placed approximately 2 cm from a 15 W UV lamp. The reaction mixture was stirred and irradiated for 24 h. After the indicated time period, the crude product was diluted with ethyl ether, filtered through a pad of silica gel and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica geldirectly to give the desired product ${}^{18}O-1b$.

4. Controlled Experiment

Figure S1. Conversion vs time plot for the reactions of **2a** with different photocatalysts or without photocatalyst. The conversion was determined by GC.

Condition A (standard reaction condition): Et_3N (1.5 equiv), UV (15 W), O₂ (1 atm), 2-MeTHF (4 mL), rt;

Condition B: Et₃N (1.5 equiv), 2,6-dimethyl phenol **36b** (1.5 equiv), UV (15 W), O₂ (1 atm), 2-MeTHF (4 mL), rt;

Figure S2. Conversion vs time plot for the reaction of 2a under different conditions. The conversion was determined by GC.

5. Characterization of Products in Details

4-Phenylphenol (1b)^[1]

White solid (46.9 mg, 92% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.61 (s, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.45-7.41 (m, 2H), 7.32-7.28 (m, 1H), 6.89 (d, J = 8.8 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 157.1, 140.2, 130.9, 128.7, 127.7, 126.3, 125.9, 115.7.

p-Cresol (2b)^[1]

Faint yellow liquid (32.1 mg, 99% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.11 (s, 1H), 6.98 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 2.20 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 155.0, 129.6, 127.1, 115.0, 20.0.

4-Tert-Butylphenol (3b)^[2]

White solid (38.7 mg, 86% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.16 (s, 1H), 7.19 (d, J = 8.8 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 1.25 (s, 9H); ¹³C NMR (125 MHz, DMSO- d_6) δ 154.9, 140.8, 125.8, 114.6, 33.6, 31.4.

4-Fluorophenol (4b)^[3]

Yellow solid (31.9 mg, 95% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.37 (s, 1H), 7.03-6.98 (m, 2H), 6.79-6.75 (m, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 155.5 (d, J_{C-F} = 231.3 Hz), 153.6 (d, J_{C-F} = 2.5 Hz), 116.0 (d, J_{C-F} = 7.5 Hz), 115.5 (d, J_{C-F} = 22.5 Hz); ¹⁹F NMR (470 MHz, DMSO- d_6) δ -126.4 (s, 1F).

4-Chlorophenol (5b)^[1]

СІ-ОН

White solid (32.9 mg, 85% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.70 (s, 1H), 7.23-7.19 (m, 2H), 6.82-6.78 (m, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 156.3, 129.1, 122.3, 116.9.

4-Bromophenol (6b)^[3]

Br-OH

Yellow solid (26.8 mg, 52% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.71 (s, 1H), 7.35-7.31 (m, 2H), 6.77-6.73 (m, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 156.7, 132.0, 117.5, 109.9.

4-Iodophenol (7b)^[3]

І---ОН

Off white solid (16.0 mg, 24% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.70 (s, 1H), 7.50-7.46 (m, 2H), 6.66-6.62 (m, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 157.3, 137.8, 118.2, 80.6.

4-Phenoxyphenol (8b)^[4]

Faint yellow solid (40.6 mg, 73% yield); EtOAc/PE = 1/5. ¹H NMR (500 MHz, DMSO- d_6) δ 9.35 (s, 1H), 7.33-7.31 (m, 2H), 7.05-7.02 (m, 1H), 6.88 (d, J = 7.5 Hz, 4H), 6.78 (d, J = 7.6 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 158.4, 153.8, 147.8, 129.7, 122.2, 120.9, 116.9, 116.2.

4-(Phenylmethoxy)-phenol (9b)^[5]

White solid (39.9 mg, 67% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.97 (s, 1H), 7.46-7.38 (m, 4H), 7.36-7.32 (m, 1H), 6.86-6.83 (m, 2H), 6.72-6.68 (m, 2H), 5.01 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 151.3, 151.2, 137.5, 128.3, 127.6, 127.5, 115.8, 115.7, 69.7.

4-Methoxyphenol (10b)^[1]

О-ОН

Clear colorless soild (26.5 mg, 71% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 8.93 (s, 1H), 6.79-6.75 (m, 2H), 6.72-6.68 (m, 2H), 3.68 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 152.1, 151.1, 115.7, 114.6, 55.3.

Hydroquinone (11b)^[1]

но-Он

Off white soild (30.1 mg, 91% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO d_6) δ 8.64 (s, 2H), 6.56 (s, 4H); ¹³C NMR (125 MHz, DMSO- d_6) δ 149.7, 115.6.

4-(Methylthio)phenol (12b)^[3]

White solid (29.4 mg, 70% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 9.48 (s, 1H), 7.19-7.15 (m, 2H), 6.78-6.74 (m, 2H), 2.41 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 155.9, 129.8, 125.9, 116.1, 17.2.

4-(Trimethylsilyl)phenol (13b)^[6]

Off white solid (47.4 mg, 95% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO d_6) δ 9.50 (s, 1H), 7.33 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 0.21 (s, 9H); ¹³C NMR (125 MHz, DMSO- d_6) δ 159.0, 135.3, 129.0, 115.8, 0.0.

4-(Trifluoromethyl)phenol (14b)^[3]

F₃C-

Yellow solid (40.8 mg, 84% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 10.30 (s, 1H), 7.55 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 160.7, 126.85 (q, J_{C-F} = 3.8 Hz), 124.77 (q, J_{C-F} = 268.8 Hz), 119.44 (q, J_{C-F} = 31.3 Hz), 115.6; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -59.6 (s, 3F).

4-Cyanophenol (15b)^[1]

Off white solid (32.4 mg, 91% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO d_6) δ 10.64 (s, 1H), 7.66 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 161.6, 134.2, 119.5, 116.4, 101.0.

4-Nitrophenol (16b)^[3]

Faint yellow solid (37.9 mg, 91% yield); EtOAc/PE = 1/3. ¹H NMR (400 MHz, DMSO- d_6) δ 11.08 (s, 1H), 8.16-8.12 (m, 2H), 6.98-6.93 (m, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 163.9, 139.6, 126.1, 115.7.

4-Hydroxybenzaldehyde (17b)^[3]

Faint yellow solid (34.4 mg, 94% yield); EtOAc/PE = 1/2. ¹H NMR (500 MHz, DMSO- d_6) δ 10.61 (s, 1H), δ 9.79 (s, 1H), 7.76 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 190.8, 163.3, 132.0, 128.4, 115.8.

4'-Hydroxyacetophenone (18b)^[2]

White solid (29.8 mg, 73% yield); EtOAc/PE = 1/3. ¹H NMR (500 MHz, DMSO- d_6) δ 10.34 (s, 1H), 7.83 (d, J = 7.5 Hz, 2H), 6.84 (d, J = 7.5 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 195.9, 162.0, 130.6, 128.6, 115.1, 26.2.

Methylparaben (19b)^[3]

White solid (42.5 mg, 93% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.35 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 6.8 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.0, 161.9, 131.3, 120.3, 115.3, 52.5.

4-Hydroxystyrene (20b)^[3]

Clear colorless liquid (20.9 mg, 58% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 9.56 (s, 1H), 7.32-7.29 (m, 2H), 6.79-6.75 (m, 2H), 6.63 (dd, $J_1 = 10.8$ Hz, $J_2 = 17.6$ Hz, 1H), 5.61 (dd, $J_1 = 1.2$ Hz, $J_2 = 17.6$ Hz, 1H), 5.06 (dd, $J_1 = 0.8$ Hz, $J_2 = 10.8$ Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 157.3, 136.4, 128.3, 127.4, 115.3, 110.5.

m-Cresol (21b)^[1]

Brown liquid (30.0 mg, 93% yield); EtOAc/PE = 1/7. ¹H NMR (400 MHz, DMSO- d_6) δ 9.26 (s, 1H), 7.07-7.04 (m, 1H), 6.61-6.57 (m, 2H), 6.60 (s, 1H), 2.24 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 157.2, 138.6, 129.1, 119.5, 115.8, 112.3, 21.0. **3-Fluorophenol (22b)**^[7]

Brown liquid (23.6 mg, 70% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSOd₆) δ 9.88 (s, 1H), 7.23-7.18 (m, 1H), 6.64-6.55 (m, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 163.0 (d, $J_{C-F} = 241.3$ Hz), 159.0 (d, $J_{C-F} = 11.3$ Hz), 130.5 (d, $J_{C-F} = 11.3$ Hz), 111.52 (d, $J_{C-F} = 2.5$ Hz), 105.4 (d, $J_{C-F} = 21.3$ Hz), 102.4 (d, $J_{C-F} = 23.8$ Hz); ¹⁹F NMR (470 MHz, DMSO-d₆) δ -112.5 (s, 1F).

3-Chlorophenol (23b)^[7]

Faint yellow liquid (25.7 mg, 67% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 9.93 (s, 1H), 7.22-7.18 (m, 1H), 6.85-6.83 (m, 2H), 6.78-6.75 (m, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 158.5, 133.4, 130.7, 118.7, 115.2, 114.2.

3-(Trifluoromethyl)phenol (24b)^[7]

Yellow liquid (46.8 mg, 96% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSOd₆) δ 10.12 (s, 1H), 7.45-7.41 (m, 1H), 7.15 (s, 1H), 7.13-7.07 (m, 2H); ¹³C NMR (125 MHz, DMSO-d₆) δ 157.8, 130.6, 130.2 (q, J _{C-F} = 31.3 Hz), 124.1 (q, J _{C-F} = 270.0 Hz), 119.4, 115.3 (q, J _{C-F} = 3.8 Hz), 111.5 (q, J _{C-F} = 3.8 Hz); ¹⁹F NMR (470 MHz, DMSO-d₆) δ -61.3 (s, 3F).

Faint yellow solid (38.9 mg, 93% yield); EtOAc/PE = 1/10. ¹H NMR (500 MHz, DMSO- d_6) δ 10.46 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.57 (s, 1H), 7.49-7.46 (m, 1H), 7.23 (d, J = 8.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 158.2, 148.7, 130.5, 122.3, 113.7, 109.5.

3'-Hydroxyacetophenone (26b)^[2]

White solid (27.9 mg, 68% yield); EtOAc/PE = 1/3. ¹H NMR (400 MHz, DMSO- d_6) δ 9.26 (s, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.36-7.33 (m, 2H), 7.05 (d, J = 8.0 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 197.7, 157.5, 138.2, 129.7, 120.2, 119.2, 114.2, 26.7.

3-Methoxyphenol (27b)^[8]

Light yellow liquid (36.8 mg, 99% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.39 (s, 1H), 7.07-7.03 (m, 1H), 6.36-6.32 (m, 2H), 6.32 (s, 1H), 3.69 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 160.5, 158.5, 129.8, 107.8, 104.6, 101.2, 54.8. **Resorcinol (28b)**^[8]

но

Faint yellow solid (32.3 mg, 98% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 9.17 (s, 2H), 6.96-6.92 (m, 1H), 6.24-6.20 (m, 2H), 6.21 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 158.4, 129.7, 106.2, 102.5.

o-Cresol (29b)^[1]

White solid (20.3 mg, 63% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.26 (s, 1H), 7.06 (d, J = 7.4 Hz, 1H), 7.02-6.98 (m, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.72-6.68 (m, 1H), 2.14 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 155.6, 130.7, 126.8, 123.9, 118.9, 114.8, 16.1.

Guaiacol (30b)^[1]

Light yellow liquid (25.5 mg, 69% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 8.93 (s, 1H), 6.95-6.91 (m, 1H), 6.81-6.73 (m, 3H), 3.77 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 147.9, 146.9, 121.2, 119.4, 115.9, 112.7, 55.8.

Methyl salicylate (31b)^[9]

Clear colorless liquid (29.6 mg, 65% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, DMSO- d_6) δ 10.55 (s, 1H), 7.82-7.80 (m, 1H), 7.57-7.53 (m, 1H), 7.03-7.00 (m, 1H), 6.99-6.95 (m, 1H), 3.92 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 169.2, 160.0, 135.6, 129.9, 119.4, 117.4, 113.0, 42.4.

2-Phenylphenol (32b)^[3]

White solid (44.0 mg, 86% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, DMSO- d_6) δ 9.56 (s, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.43-7.40 (m, 2H), 7.33-7.36 (m, 2H), 7.21-7.16 (m, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.92-6.88 (m, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 154.2, 138.6, 130.3, 129.0, 128.4, 127.9, 127.7, 126.4, 119.4, 116.0.

2-Hydroxystyrene (33b)^[10]

СОН

Clear colorless liquid (8.1 mg, 23% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, DMSO- d_6) δ 9.65 (s, 1H), 7.46-7.44 (m, 1H), 7.13-7.09 (m, 1H), 6.96 (dd, $J_1 = 11.2$ Hz, $J_2 = 17.6$ Hz, 1H), 6.87-6.84 (m, 1H), 6.82-6.78 (m, 1H), 5.78 (dd, $J_1 = 1.6$ Hz, $J_2 = 18.0$ Hz, 1H), 5.21 (dd, $J_1 = 1.6$ Hz, $J_2 = 11.2$ Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 154.7, 131.8, 128.7, 126.2, 123.9, 119.1, 115.7, 113.5.

3,5-Dimethylphenol (34b)^[3]

White solid (19.5 mg, 53% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.14 (s, 1H), 6.42 (s, 1H), 6.39 (s, 2H), 2.19 (s, 6H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 157.5, 138.6, 120.8, 113.3, 21.3.

2,5-Dimethylphenol (35b)^[9]

White solid (26.7 mg, 73% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO- d_6) δ 9.13 (s, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.61 (s, 1H), 6.51 (d, J = 7.6 Hz, 1H), 2.20 (s, 3H), 2.09 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 155.1, 135.6, 130.2, 120.5, 119.4, 115.3, 20.7, 15.5.

2,6-Dimethylphenol (36b)^[1]

Faint yellow solid (20.3 mg, 55% yield); EtOAc/PE = 1/15. ¹H NMR (400 MHz, DMSO- d_6) δ 8.19 (s, 1H), 6.91 (d, J = 7.2 Hz, 2H), 6.67-6.63 (m, 1H), 2.17 (s, 6H); ¹³C NMR (125 MHz, DMSO- d_6) δ 153.1, 128.1, 124.1, 119.1, 16.5.

2,4,6-Trimethylphenol (37b)^[8]

White solid (31.8 mg, 78% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.93 (s, 1H), 6.72 (s, 2H), 2.15 (s, 3H), 2.14 (s, 6H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 150.7, 128.6, 127.3, 124.0, 20.0, 16.4.

2,6-Dimethoxyphenol (38b)^[3]

Off white solid (35.2 mg, 76% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO d_6) δ 8.28 (s, 1H), 6.74-6.70 (m, 1H), 6.63-6.61 (m, 2H), 3.77 (s, 6H); ¹³C NMR (125 MHz, DMSO- d_6) δ 148.2, 135.7, 118.1, 105.8, 56.0.

3,4-Dimethoxyphenol (39b)^[7]

Faint yellow solid (36.9 mg, 80% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 8.97 (s, 1H), 6.76 (d, J = 8.4 Hz, 1H), 6.43 (d, J = 2.8 Hz, 1H), 6.29-6.26 (m, 1H), 3.72 (s, 3H), 3.67 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 151.9, 149.8, 141.8, 113.8, 105.6, 100.9, 56.4, 55.3.

Benzo[d][1,3]dioxol-5-ol (40b)^[6]

White solid (36.5 mg, 88% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 9.15 (s, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 2.4 Hz, 1H), 6.23-6.20 (m, 1H), 5.92 (s, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 152.5, 147.6, 139.6, 108.1, 106.2, 100.5, 97.8.

Naphthalen-1-ol (43b)^[1]

Off white solid (35.5 mg, 82% yield); EtOAc/PE = 1/10. ¹H NMR (500 MHz, DMSOd₆) δ 10.32 (s, 1H), 8.34 (d, J = 7.0 Hz, 1H), 8.01 (d, J = 6.5 Hz, 1H), 7.67-7.46 (m, 4H), 7.08 (d, *J* = 5.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 153.1, 134.4, 127.3, 126.4, 126.0, 124.6, 124.5, 121.9, 118.3, 108.0.

Naphthalen-2-ol (44b)^[1]

White solid (34.2 mg, 79% yield); EtOAc/PE = 1/10. ¹H NMR (500 MHz, DMSO- d_6) δ 9.74 (s, 1H), 7.77-7.74 (m, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.39-7.37 (m, 1H), 7.27-7.24 (m, 1H), 7.12 (s, 1H), 7.10-7.08 (m, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 155.3, 134.6, 129.2, 127.7, 127.5, 126.1, 125.9, 122.6, 118.6, 108.6.

Anthracen-2-ol (45b)^[6]

Yellow solid (29.2 mg, 50% yield); EtOAc/PE = 1/5. ¹H NMR (500 MHz, DMSO- d_6) δ 9.94 (s, 1H), 8.42 (s, 1H), 8.27 (s, 1H), 7.97-7.96 (m, 3H), 7.43-7.38 (m, 2H), 7.24 (s, 1H), 7.17 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 154.8, 132.9, 131.7, 129.8, 129.3, 128.1, 127.3, 126.0, 125.4, 124.0, 122.8, 120.6, 106.5. **1-Hydroxypyrene (46b)**^[1]

Yellow solid (46.2 mg, 71 % yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 10.72 (s, 1H), 8.38 (d, J = 8.8 Hz, 1H), 8.15-8.13 (m, 3H), 8.08-7.97 (m, 3H), 7.92 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 152.2, 131.4, 131.3, 127.4, 126.1, 126.1, 125.5, 125.4, 124.5, 123.9, 123.8, 123.6, 123.6, 121.4, 118.1, 113.2.

1-Thianthrenol (47b)^[11]

Yellow solid (51.1 mg, 73 % yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 10.48 (s, 1H), 7.60-7.53 (m, 2H), 7.36-7.31 (m, 2H), 7.18-7.14 (m, 1H), 7.01 (d, J = 7.6 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 155.0, 134.7, 134.6, 128.7, 128.4, 128.0, 127.9, 120.9, 119.4, 114.2.

9-Phenyl-9H-carbazol-2-ol (48b)^[12]

Faint yellow solid (66.1 mg, 85% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO- d_6) δ 9.57 (s, 1H), 8.09 (d, J = 7.6 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.73-7.69 (m, 2H), 7.63-7.61 (m, 2H), 7.57-7.53 (m, 1H), 7.34-7.28 (m, 2H), 7.25-7.21 (m, 1H), 6.80-6.76 (m, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 157.0, 141.9, 140.1, 137.0, 130.1, 127.5, 126.6, 124.3, 123.3, 121.3, 119.9, 119.2, 115.2, 109.6, 109.1, 95.3.

N-(4-hydroxyphenyl)carbazole (49b)^[13]

Faint yellow liquid (54.8 mg, 71% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO-d₆) δ 9.89 (s, 1H), 8.24 (d, J = 7.6 Hz, 2H), 6.45-7.38 (m, 4H), 7.31-7.26 (m, 4H), 7.07 (d, J = 8.4 Hz, 2H); ¹³C NMR (125 MHz, DMSO-d₆) δ 156.9, 140.7, 128.2, 127.8, 126.0, 122.3, 120.3, 119.5, 116.6, 109.5.

9,9-Dimethyl-9H-fluoren-2-ol (50b)^[14]

Yellow solid (53.4 mg, 85% yield); EtOAc/PE = 1/5. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.52 (s, 1H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.31-7.27 (m, 1H), 7.23-7.19 (m, 1H), 6.93 (d, *J* = 2.0 Hz, 1H), 6.77 (dd, *J*₁ = 2.4 Hz, J₂ = 8.4 Hz, 1H), 1.41 (s, 6H); ¹³C NMR (125 MHz, DMSO-d₆) δ 157.5, 155.2, 152.6, 139.0, 129.7, 126.8, 125.6, 122.4, 120.9, 118.7, 114.1, 109.8, 46.1, 27.0. **1-Octanol (51b)**^[15]

~~~он

Clear colorless liquid (27.7 mg, 71% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 3.65-3.61 (m, 2H), 1.83 (s, 1H), 1.60-1.53 (m, 2H), 1.40-1.27 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 63.1, 32.8, 31.9, 29.4, 29.3, 25.8, 22.7, 14.1.

Decan-1-ol (52b) [12]

ОН

Clear colorless liquid (47.7 mg, 99% yield); EtOAc/PE = 1/10. ¹H NMR (400 MHz, CDCl₃) δ 3.63 (t, J = 6.8 Hz, 2H), 2.04 (s, 1H), 1.60-1.53 (m, 2H), 1.36-1.28 (m, 14H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 63.1, 32.9, 32.0, 19.7, 29.6, 29.5, 29.4, 25.8, 22.7, 14.1.

Reference:

[1] Y.-Q. Zou, J.-R. Chen, X.-P. Liu, L.-Q. Lu, R. L. Davis, K. A. Jørgensen and W.-J.
Xiao, *Angew. Chem. Int. Ed.*, 2012, **51**, 784.

- [2] J. Gatenyo, I. Vints and S. Rozen, Chem. Commun., 2013, 49, 7379-7381.
- [3] C. Zhu, R. Wang and J. R. Falck, Org. Lett., 2012, 14, 3494.
- [4] E. Dubost, V. Babin, F. Benoist and T. Cailly. Org. Lett., 2018, 20, 6302-6305.
- [5] Santos, C. C. Wagner, Adv. Synth. Catal., 2018, 360, 1376-1383.
- [6] I. Kumar, R. Sharma and U. Sharmaa, Adv. Synth. Catal., 2018, 360, 2013-2019.
- [7] J. Morin, Y. Zhao and V. Snieckus, Org. Lett,. 2013, 15, 4102.
- [8] X. Zhang, G. Wu, W.-X. Gao and H.-Y. Wu, Org. Lett., 2018, 203, 708-711.
- [9] K. Renate; V. Adv. Synth. Catal., 2018, 48, 2809-2814.

[10] M. V. Parfenov, L. V. Pirutko, I. E. Soshnikov and G. I. Panow, *Catalysis Communications.*, 2016, **86**, 59-62.

[11] H. W. Gschwend, and H. R. Rodriguez, *Organic Reactions (Hoboken, NJ, United States)*, 26, No pp. given; 1979

[12] D.-P. Luo, Y.-F. Huang, X.-Y. Hong, D. Chen, G.-X. Li, X.-B. Huang, W.-X.Gao, M.-C. Liu, Y.-B. Zhou and H.-Y. Wu, *Adv. Synth. Catal.*, 2019, **361**, 961.

[13] H.-C. Yu, C. Liu, X.-M. Dai, J. Wang and J.-S. Qiu, *Tetrahedron*, 2017, 73, 3031-3035.

[14] L. T. Ball, L. J. Guy C and C. A. Russell, J. Am. Chem. Soc., 2014, 136, 254-264.

[15] S. R. Tamang, D. Bedi, S. Shafiei-Haghighi, C. R. Smith, C. Crawford and M. Findlater, *Org. Lett.*, 2018, **20**, 6695-6700.

6. NMR spectra

Figure S3. ¹H NMR of 1b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 1b (125 MHz, DMSO-*d*₆)

Figure S4. ¹H NMR of 2b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 2b (125 MHz, DMSO-*d*₆)

and¹⁹F NMR of **4b** (470 MHz, DMSO-*d*₆)

Figure S7. ¹H NMR of 5b (400 MHz, DMSO-d₆) and ¹³C NMR of 5b (125 MHz, DMSO-d₆)

Figure S8. ¹H NMR of 6b (400 MHz, DMSO-d₆) and ¹³C NMR of 6b (125 MHz, DMSO-d₆)

Figure S9. ¹H NMR of 7b (400 MHz, DMSO-d₆) and ¹³C NMR of 7b (125 MHz, DMSO-d₆)

Figure S10. ¹H NMR of 8b (500 MHz, DMSO-d₆) and ¹³C NMR of 8b (125 MHz, DMSO-d₆)

Figure S11. ¹H NMR of 9b (400 MHz, DMSO-d₆) and ¹³C NMR of 9b (125 MHz, DMSO-d₆)

Figure S12. ¹H NMR of 10b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 10b (125 MHz, DMSO-*d*₆)

Figure S13. ¹H NMR of 11b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 11b (125 MHz, DMSO-*d*₆)

Figure S14. ¹H NMR of 12b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 12b (125 MHz, DMSO-*d*₆)

Figure S15. ¹H NMR of 13b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 13b (125 MHz, DMSO-*d*₆)

and ¹⁹F NMR of **14b** (470 MHz, DMSO-*d*₆)

Figure S17. ¹H NMR of 15b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 15b (125 MHz, DMSO-*d*₆)

Figure S18. ¹H NMR of 16b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 16b (125 MHz, DMSO-*d*₆)

Figure S19. ¹H NMR of 17b (500 MHz, DMSO-*d*₆) and ¹³C NMR of 17b (125 MHz, DMSO-*d*₆)

Figure S20. ¹H NMR of 18b (500 MHz, DMSO-*d*₆) and ¹³C NMR of 18b (125 MHz, DMSO-*d*₆)

Figure S21. ¹H NMR of 19b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 19b (125 MHz, DMSO-*d*₆)

Figure S22. ¹H NMR of 20b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 20b (125 MHz, DMSO-*d*₆)

Figure S23. ¹H NMR of 21b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 21b (125 MHz, DMSO-*d*₆)

S43

and ¹⁹F NMR of **22b** (470 MHz, DMSO-*d*₆)

Figure S25. ¹H NMR of 23b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 23b (125 MHz, DMSO-*d*₆)

---61.31

Figure S26. ¹H NMR of **24b** (400 MHz, DMSO-*d*₆) and ¹³C NMR of **24b** (125 MHz, DMSO-*d*₆) and ¹⁹F NMR of **24b** (470 MHz, DMSO-*d*₆)

Figure S27. ¹H NMR of 25b (500 MHz, DMSO-*d*₆) and ¹³C NMR of 25b (125 MHz, DMSO-*d*₆)

Figure S28. ¹H NMR of 26b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 26b (125 MHz, DMSO-*d*₆)

Figure S29. ¹H NMR of 27b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 27b (125 MHz, DMSO-*d*₆)

Figure S30. ¹H NMR of 28b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 28b (125 MHz, DMSO-*d*₆)

Figure S31. ¹H NMR of 29b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 29b (125 MHz, DMSO-*d*₆)

Figure S32. ¹H NMR of 30b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 30b (125 MHz, DMSO-*d*₆)

Figure S33. ¹H NMR of 31b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 31b (125 MHz, DMSO-*d*₆)

Figure S34. ¹H NMR of 32b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 32b (125 MHz, DMSO-*d*₆)

Figure S35. ¹H NMR of 33b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 33b (125 MHz, DMSO-*d*₆)

Figure S36. ¹H NMR of 34b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 34b (125 MHz, DMSO-*d*₆)

Figure S37. ¹H NMR of 35b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 35b (125 MHz, DMSO-*d*₆)

Figure S38. ¹H NMR of 36b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 36b (125 MHz, DMSO-*d*₆)

Figure S39. ¹H NMR of 37b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 37b (125 MHz, DMSO-*d*₆)

Figure S40. ¹H NMR of 38b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 38b (125 MHz, DMSO-*d*₆)

Figure S41. ¹H NMR of 39b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 39b (125 MHz, DMSO-*d*₆)

Figure S42. ¹H NMR of 40b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 40b (125 MHz, DMSO-*d*₆)

Figure S43. ¹H NMR of 43b (500 MHz, DMSO-*d*₆) and ¹³C NMR of 43b (125 MHz, DMSO-*d*₆)

Figure S44. ¹H NMR of 44b (500 MHz, DMSO-*d*₆) and ¹³C NMR of 44b (125 MHz, DMSO-*d*₆)

Figure S46. ¹H NMR of 46b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 46b (125 MHz, DMSO-*d*₆)

S68

Figure S48. ¹H NMR of 48b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 48b (125 MHz, DMSO-*d*₆)

Figure S49. ¹H NMR of 49b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 49b (125 MHz, DMSO-*d*₆)

Figure S50. ¹H NMR of 50b (400 MHz, DMSO-*d*₆) and ¹³C NMR of 50b (125 MHz, DMSO-*d*₆)

