Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Supplementary Material

Unravelling donor-acceptor film morphology formation for environmentally-friendly OPV ink formulations

Natalie P. Holmes^{a,b*}, Holly Munday^b, Matthew G. Barr^b, Lars Thomsen^c, Matthew A. Marcus^d, A. L. David Kilcoyne^d, Adam Fahy^b, Jan van Stam^e, Paul C. Dastoor^b, Ellen Moons^a

^a Department of Engineering and Physics, Karlstad University, Karlstad 65188, Sweden

^b Centre for Organic Electronics, University of Newcastle, Callaghan NSW 2308, Australia

^c Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia

^d Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^e Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden

^{*}Corresponding author: Natalie P. Holmes, natalie.holmes@newcastle.edu.au

1. List of solvents utilised for solubility tests

Table S1. Solvents utilised for solubility tests, with good solvents and non-solvents identified.

Calarana	Solubility Identification			
Solvent	TQ1	PC ₆₁ BM		
Acetone	Non-solvent	Non-solvent		
1-Butanol	Non-solvent	Non-solvent		
2-Butanol	Non-solvent	Non-solvent		
Butyl acetate	Non-solvent	Good solvent		
Chlorobenzene	Good solvent	Good solvent		
Chloroform	Good solvent	Good solvent		
Cyclohexane	Non-solvent	Non-solvent		
Cyclohexanone	Good solvent	Good solvent		
Cyclopentyl methyl ether	Good solvent	Good solvent		
Dichloromethane	Good solvent	Good solvent		
Dimethyl sulfoxide	Non-solvent	Non-solvent		
Dipropyl amine	Good solvent	Non-solvent		
Dipropylene glycol	Non-solvent	Non-solvent		
Ethanol	Non-solvent	Non-solvent		
Ethyl acetate	Non-solvent	Non-solvent		
Ethyl benzene	Good solvent	Good solvent		
Formamide	Non-solvent	Non-solvent		
Glycerol	Non-solvent	Non-solvent		
Isopropyl acetate	Non-solvent	Non-solvent		
Isopropyl benzene	Good solvent	Good solvent		
Mesitylene	Good solvent	Good solvent		
Methylacetate	Non-solvent	Non-solvent		
Methyl cyclohexane	Non-solvent	Non-solvent		
2-Methyl tetrahydrofuran	Good solvent	Good solvent		
N-Methyl formamide	Non-solvent	Non-solvent		
N,N-Dimethylformamide	Non-solvent	Non-solvent		
1-Octanol	Non-solvent	Non-solvent		
o-Dichlorobenzene	Good solvent	Good solvent		
Pentyl acetate	Non-solvent	Good solvent		
2-Propanol	Non-solvent	Non-solvent		
Propylene carbonate	Non-solvent	Non-solvent		
Tetrahydronaphthalene	Good solvent	Good solvent		
Tetrahydrofuran	Good solvent	Good solvent		
Toluene	Good solvent Good solvent			
o-Xylene	Good solvent	Good solvent		
Water	Non-solvent	Non-solvent		

A disadvantage of the HSP method is that a large amount of material is required for the numerous solubility tests to generate data for the HSP calculation. Rather than choosing a concentration of 15 - 30 mg ml⁻¹ for the initial solubility tests we chose a concentration of 1 mg ml⁻¹ to minimise material use.

2. BHJ film preparation

Table S2. Spin coating and drying conditions for BHJ films. Thermal drying was utilised to remove residual solvent and additive.

Ink Code	TQ1:PC ₆₁ BM w/w Ratio	Spin Coating Speed (RPM)	Spin Coating Time (min)	Drying Temperature (°C)	Drying Time (min)
Lim	1:2	2000	1	80	10
Lim:2-MA	1:2	2000	1	80	10
Lim:MO	1:2	2000	1	80	10
Lim:MY	1:2	2000	1	80	10
Ani:DE	1:2	2000	1	140	5
Ani:DIO	1:2	1300	1	100	5
2-MA:Lim	1:2	2000	1	140	5
o-DCB (Ref)	1:1	2000	1	80	10

3. Safety phrases and classification of solvents and additives

Table S3. Toxicity, biodegradability and hazard statements for solvents and additives.

Solvent/Additive	Oral Toxicity (LD ₅₀) mg/kg	Hazard Code	Biodegradability
d-Limonene	>5000; 4400	H226, H304, H315, H317, H410	71 % - Readily biodegradable (OECD Test Guideline 301B - CO ₂ evolution)
2-Methylanisole	>2000	H226, H315	Low persistence in air and soil. Low bioaccumulative potential.
Anisole	3700	H226	Biodegradable
Diphenyl ether	3370	H410	62% Ratio BOD/ThBOD*
1- Methylnaphthalene	1840	H302, H315, H317, H319, H410	Not readily biodegradable
1- Methoxynaphthalene	Information not available	H317, H410	High persistence in water/soil and air. Low bioaccumulative potential.
o-Dichlorobenzene	500	H302, H332, H315, H317, H319, H335, H410	Not readily biodegradable
1,8-Diiodooctane	Information not available	H302, H315, H319, H335	High persistence in water/soil and air. High bioaccumulative potential.

^{*}ThOD = Theoretical oxygen demand

- BOD = Biochemical oxygen demand
- H226: Flammable liquid and vapor [Warning: flammable liquids].
- H302: Harmful if swallowed.
- H304: May be fatal if swallowed and enters airways [Danger: aspiration hazard].
- H315: Causes skin irritation [Warning: skin corrosion/irritation].
- H317: May cause an allergic skin reaction [Warning: sensitisation, skin].
- H319: Causes serious eye irritation [Warning: serious eye damage/eye irritation].
- H332: Harmful if inhaled [Warning: acute toxicity, inhalation].
- H335: May cause respiratory irritation [Warning: specific target organ toxicity, single exposure; respiratory tract irritation].
- H336: May cause drowsiness or dizziness [Warning: specific target organ toxicity, single exposure; narcotic effects].
- H373: Causes damage to organs through prolonged or repeated exposure [Warning: specific target organ toxicity, repeated exposure].
- H400: Very toxic to aquatic life [Warning: hazardous to the aquatic environment, acute hazard].
- H410: Very toxic to aquatic life with long lasting effects [Warning: hazardous to the aquatic environment, long-term hazard].