Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Highly selective conversion of natural oil to alcohols or alkanes over Pd stabilized CuZnAl catalyst in mild condition

Ziwei Guo^a, Feng Zhou^b, Hao Wang^a, Xiaohao Liu^c, Guangyue Xu^a, Ying Zhang^{a*}, Yao Fu^a

^a Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

^b Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun, Liaoning 113001, China.

^c CAS Key Lab of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China

* Corresponding author.E-mail: <u>zhzhying@ustc.edu.cn</u>

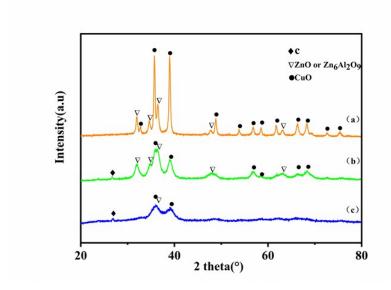
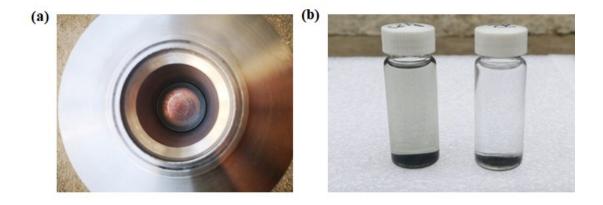
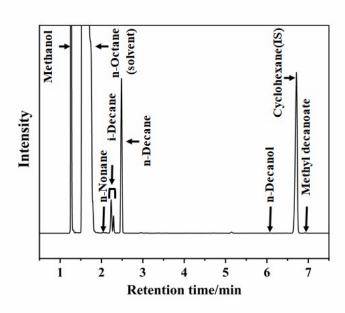




Figure S1. XRD patterns of (a) CuZnAl-H, (b) CuZnAl-S, (c) CuZnAl-ST.

Figure S2. (a) The reactor after reaction with CuZnAl (b) The color of the liquid after reaction with CuZnAl (left) and 0.5% Pd/CuZnAl (right).

Figure S3. GC-FID chromatogram of liquid products after the methyl decanoate HDO with 0.5% Pd/CuZnAl and HZSM-5. Reaction conditions: 50 mg of 0.5% Pd/CuZnAl, 25 mg of HZSM-5 (Si/Al = 25), 50 mg of methyl decanoate, 50 mg of cyclohexane as IS (internal standard), 10 mL of n-octane as solvent, 8 h and 800 rpm.800 rpm.

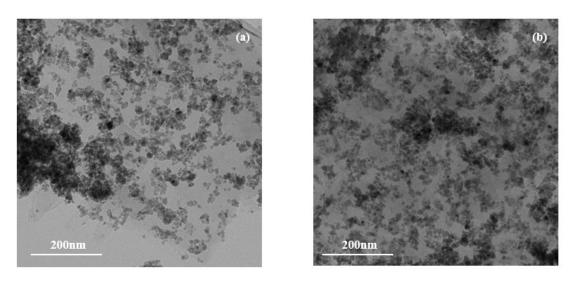
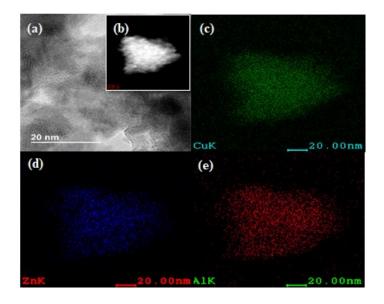
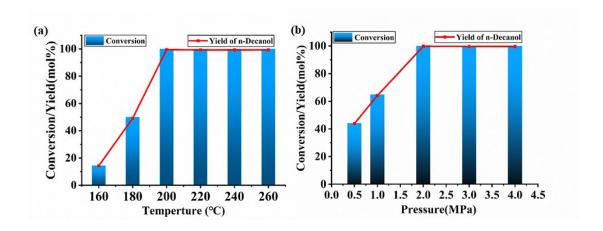




Fig S4. TEM images of (a) Fresh CuZnAl, (b) Fresh 0.5% Pd/CuZnAl

Figure S5. (a) HRTEM image of CuZnAl; (b) HAADF-STEM and elemental mapping images of CuZnAl: (c) Cu, (d) Zn and (e) Al elements

Figure S6. (a)Temperature-conversion and Temperature-yield profiles for hydrogenation of methyl decanoate to n-decyl alcohol at 2 MPa H₂ pressure. (b) Pressure-conversion and Pressure-yield profiles for hydrogenation of methyl decanoate to n-decyl alcohol at 200 °C. Reaction conditions: 50 mg of 0.5% Pd/CuZnAl, 50 mg of methyl decanoate, 10 mL of n-octane as solvent, 8 h and 800 rpm.

Table S1. Different products with 0.5% Pd/CuZnAl for HDO of coconut oil

Entry	Products	Yield(%)	
1	C_6	0.2	
2	C_8	5.0	
3	C_{10}	4.4	
4	C_{12}	41.3	
5	C_{14}	15.1	
6	C_{16}	6.8	
7	C_{18}	7.6	

Table S2. The ICP of Pd species in 0.5% Pd/CuZnAl.

Entry	catalyst	Percentage (%)	
		Pd	
1	Pd/CuZnAl	0.519	
2	Used Pd/CuZnAl	0.513	

Table S3. The catalytic performance of 0.5% Pd/CuZnAl in the conversion of methyl decanoate to n-decanol.

Entry	Catalyst	Conversion	Yield(mol%)	
	Catalyst	(mol%)	C ₁₀	Decanol
1 ^a	Pd/CuZnAl	35.4	0.1	35.3
2 ^b	Pd/CuZnAl	100	0.2	99.8

Reaction conditions:10 mg of catalyst, 50 mg of methyl decanoate, 10 mL of n-octane as solvent, 200°C , 2 MPa $\rm H_2$ and 800 rpm. a. 8 h; b. 32 h.