Supporting Information for

[4+4]-Cycloaddition of Isoprene for the Production of High-Performance Bio-Based Jet Fuel

Kyle E. Rosenkoetter^a, C. Rose Kennedy^b, Paul J. Chirik^{b*}, and Benjamin G. Harvey^{a*}

^aUS NAVY, NAWCWD, Research Department, Chemistry Division, China Lake, California 93555

^bDepartment of Chemistry, Princeton University, Princeton, New Jersey 08544, United States

*Corresponding Authors (Email: benjamin.g.harvey@navy.mil; pchirik@princeton.edu,)

Contents

Figure S1.	¹ H NMR spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b)	S2
Figure S2.	q ¹³ C{ ¹ H} NMR spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b)	S2
Figure S3.	¹ H- ¹³ C HSQC NMR spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b)	S3
Figure S4.	¹ H- ¹³ C HMBC NMR spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b)	S3
Figure S5.	¹ H- ¹ H COSY NMR spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b)	S4
Figure S6.	FID-GC trace of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b)	S4
Figure S7.	GC-MS trace of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b)	S5
Figure S8.	¹ H NMR spectrum of 1,4-dimethylcyclooctane (10:1 3a:3b)	S5
Figure S9.	¹³ C{ ¹ H} NMR spectrum of 1,4-dimethylcyclooctane (10:1 3a:3b)	S6
Figure S10.	FID-GC trace of 1,4-dimethylcyclooctane (10:1 3a:3b)	S6
Figure S11.	GC-MS trace of 1,4-dimethylcyclooctane (10:1 3a:3b)	S7

Figure S1. ¹H NMR (500 MHz, CDCl₃) spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b).

Figure S2. q¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 **2a:2b**).

Figure S3. ¹H–¹³C HSQC (500 MHz, CDCl₃) spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b).

Figure S4. ¹H–¹³C HMBC (500 MHz, CDCl₃) spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b).

Figure S5. ¹H–¹H COSY (500 MHz, CDCl₃) spectrum of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b).

Figure S6. GC-FID trace of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b, using analytical method "30TO60TO100_20MIN").

Figure S7. GC-MS (EI) trace of 1,6-dimethyl-1,5-cyclooctadiene (10:1 2a:2b).

Figure S8. ¹H NMR (300 MHz, CDCl₃) spectrum of 1,4-dimethylcyclooctane (10:1 3a:3b).

Figure S9. ¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of 1,4-dimethylcyclooctane (10:1 3a:3b).

Figure S10. FID-GC trace of 1,4-dimethylcyclooctane (10:1 3a:3b)

Figure S11. GC-MS (EI) trace of 1,4-dimethylcyclooctane (10:1 3a:3b).