Supporting Information

Transition-Metal-Free Decarboxylative Halogenation of 2-Picolinic Acids

with Dihalomethane under Oxygen Conditions

Xitao Zhang,^a Xiujuan Feng,^{*a} Haixia Zhang,^a Yoshinori Yamamoto,^{a,b} and Ming Bao^{*a}

^a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China ^b Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan and Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Table of Contents

1. GC spectrum for CH ₂ BrCl capture	S2
2. Procedure for Gram-Scale Synthesis and Further Transformations	S2
2. Characterization Data of Products	S3
3. References	S12
4. Copies of ¹ H and ¹³ C NMR Spectra of Products	S13

1. GC spectrum for CH₂BrCl capture

Mass spectrum for CH₂BrCl

2. Procedure for Gram-Scale Synthesis and Further Transformations

A reaction flask was charged with a mixture of quinoline-2-carboxylic acid (**1a**, 1.73 g, 10 mmol), NaHCO₃ (840 mg, 10 mmol), *t*-BuOCl (1.7 mL, 15 mmol), and dichloromethane (100 mL). The reaction mixture was stirred at 60 °C for 20 h, and then was cooled to room temperature. The solvent was removed under reduced pressure, and the residue obtained was purified via silica gel chromatography (eluent: ethyl acetate : petroleum ether = 1 : 10) to afford 2-chloroquinoline (**2a**) as a white solid (1.24 g, 76%).

A reaction flask was charged with a mixture of 2-bromo-3,5-dichloropyridine (272.3 mg, 1.2 mmol), hydroquinone (50.1 mg, 0.5 mmol), K₃PO₄ (424.5 mg, 2 mmol), CuI (19.0 mg, 0.1 mmol), and picolinic acid (24.6 mg, 0.2 mmol). After the flask was evacuated and back-filled with N₂, DMSO (2 mL) were added, and then the mixture was heated at 100 °C for 24 h. EtOAc (10 mL) and H₂O (10 mL) were added and the mixture was filtered through a Celite pad. The organic layer was separated and the aqueous layer was extracted twice with EtOAc (2 × 10 mL). The combined organic layers were washed with H₂O (2 × 10 mL), dried over Na₂SO₄, and filtered through a pad of silica gel. The filtrate was concentrated and the residue was purified by column chromatography (eluent: ethyl acetate : petroleum ether = 1 : 10) to afford 1,4-bis((3,5-dichloropyridin-2-yl)oxy)benzene (**4**) as a white solid (176.8 mg, 88%).

3. Characterization Data of Products

The spectroscopic data of all the products are presented. All the known compounds were in accordance with the data reported in the literatures.

2-chloroquinoline (2a)¹

White solid (43.2 mg, 88% yield), mp 37–39 °C, (lit.¹ mp 36–38 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.74–7.69 (m, 1H), 7.55–7.51 (m, 1H), 7.34 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 147.9, 138.9, 130.6, 128.6, 127.6, 127.0, 126.8, 122.3.

2-chloropyridine (2b)¹

Colorless oil (73% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.40 (dd, J = 4.8, 1.6 Hz, 1H), 7.68–7.63 (m, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.24–7.21 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.6, 149.8, 138.7, 124.5, 122.2.

2-chloro-3-methylpyridine (2c)²

Colorless oil (80% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 4.0 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.14 (dd, J = 7.2, 4.8 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.6, 147.0, 139.3, 132.5, 122.5, 19.6.

2-chloro-3-phenylpyridine (2d)²

White solid (50.1 mg, 91% yield), mp 52–54 °C, (lit.² mp 46–47 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 7.67–7.64 (m, 1H), 7.45–7.43 (m, 5H), 7.32–7.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 148.4, 139.7, 137.5, 137.0, 129.3, 128.4, 122.6.

2,3-dichloropyridine (2e)²

White solid (35.5 mg, 80% yield), mp 46–48 °C, (lit.² mp 45–46 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, J = 4.4 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.23 (dd, J = 7.8, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 147.3, 138.8, 130.7, 123.2.

3-bromo-2-chloropyridine (2f)²

Light yellow solid (47.9 mg, 83% yield), mp 55–57 °C, (lit.² mp 55–56 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.35 (dd, J = 4.8, 1.6 Hz, 1H), 7.95 (dd, J = 7.6, 1.6 Hz, 1H), 7.14 (dd, J = 8.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 148.0, 142.3, 123.4, 120.4.

2-chloro-3-nitropyridine (**2g**)²

colorless solid (22.4 mg, 47% yield), mp 100–102 °C, (lit.² mp 99–101 °C) ¹H NMR (400 MHz, CDCl₃): δ 8.64 (dd, J = 4.8, 1.6 Hz, 1H), 8.24 (dd, J = 8.0, 1.6 Hz, 1H), 7.48 (dd, J = 8.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152.4, 148.9, 143. 6, 134.2, 122.9.

2-chloro-4-methylpyridine (2h)³

Colorless oil (74% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, J = 5.2 Hz, 1H), 7.16 (s, 1H), 7.03 (d, J = 5.2 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.5, 150.4, 149.3, 124.9, 20.8.

2,4-dichloropyridine (2i)⁴

Light yellow oil (27.1 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 5.2 Hz, 1H), 7.38 (d, J = 1.6 Hz, 1H), 7.34–7.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 150.2, 145.9, 124.5, 123.0.

```
4-bromo-2-chloropyridine (2j)<sup>4</sup>
```


Light yellow oil (30.0 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, J = 5.2 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 7.41 (dd, J = 5.2, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152.2, 150.1, 134.23, 127.4, 125.9.

2-chloro-5-methylpyridine (2k)³

Colorless oil (72% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 148.7, 139.4, 132.0, 123.7, 17.7.

2-chloro-5-phenylpyridine (21)⁵

Ph N Cl White solid (31.9 mg, 56% yield), mp 55–56 °C, (lit.⁵ mp 53–54 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 148.7, 139.4, 132.0, 123.7, 17.7.

2-methyl-6-phenylpyridine (3m)⁶

White solid (35.4 mg, 59% yield), mp 86–87 °C, (lit.⁶ mp 86–88 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 7.46 (dd, J = 8.4, 1.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 148.7, 139.4, 132.0, 123.7, 17.7.

2-chloro-6-methylpyridine (2n)⁷

Colorless oil (65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, J = 7.6, 7.6 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 150.6, 138.8, 121.7, 121.2, 24.1.

2,3,5-trichloropyridine (20)⁸

White solid (22.9 mg, 42% yield), mp 49–51 °C, (lit.⁸ mp 49–50 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, J = 2.0 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 146.1, 138.2, 131.1, 130.9.

1-chloroisoquinoline (2p)⁹

Light yellow solid (45.2 mg, 92%), mp 34–36 °C, (lit.⁹ mp 30.1 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 5.6 Hz, 1H), 7.82 (d, J = 8.10 Hz, 1H), 7.74–7.71 (m, 1H), 7.68–7.65 (m, 1H), 7.58 (d, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 141.3,137.7, 131.2, 128.5, 126.9, 126.8, 126.3, 120.8.

2-Bromoquinoline (3a)¹

White solid (47.5 mg, 76% yield), mp 49–50 °C, (lit.¹⁰ mp 50–51 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.74–7.71 (m, 1H), 7.58–7.54 (m, 1H), 7.50 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.6, 141.8, 138.4, 130.5, 128.7, 127.7, 127.1, 127.0, 125.8.

2-bromopyridine (**3b**)¹¹

Colorless oil (65% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.39 (dd, J = 4.8, 1.2 Hz, 1H), 7.59–7.35 (m, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.28–7.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.3, 138.5, 128.3, 122.6.

2-bromo-3-methylpyridine (3c)¹²

Light yellow oil (70% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, *J* = 4.4 Hz, 1H), 7.51 (d, *J* = 7.2 Hz, 1H), 7.17–7.14 (m, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 144.7, 138.8, 125.3, 122.8, 22.0.

2-bromo-3-phenylpyridine (**3d**)¹³

Light yellow oil (64.6 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.37 (dd, J = 4.8, 1.6 Hz, 1H), 7.61 (dd, J = 7.6, 2.0 Hz, 1H), 7.47–7.40 (m, 5H), 7.33 (dd, J = 7.6, 4.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 148.7, 142.4, 139.8, 139.1, 138.9, 129.3, 128.4, 128.3, 122.7.

2-bromo-3-chloropyridine (3e)¹⁴

White solid (46.1 mg, 80% yield), mp 57–58 °C, (lit.¹³ mp 50–53 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, J = 4.8, 1.6 Hz, 1H), 7.51 (dd, J = 8.0, 1.6 Hz, 1H), 7.20 (dd, J = 7.6, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 147.6, 141.8, 138.2, 133.5, 123.5.

2,3-dibromopyridine (3f)¹⁵

White solid (55.4 mg, 78% yield), mp 58–60 °C, (lit.¹⁵ mp 60.5 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (dd, J = 4.4 Hz, 1.6 Hz, 1H), 7.89 (dd, J = 8.0, 1.6 Hz, 1H), 7.14 (dd, J = 8.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.1, 143.7, 141.7, 123.9, 123.6.

2-bromo-3-nitropyridine (**3g**)¹⁶

White solid (37.6 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.63–8.59 (m, 1H), 8.23–8.13 (m, 1H), 7.49–7.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152,6, 133.9, 133.7, 123.1.

2-bromo-4-methylpyridine (3h)¹³

Light yellow oil (55% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, *J* = 5.2 Hz, 1H), 7.32 (s, 1H), 7.06 (d, *J* = 4.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 149.7, 142.3, 128.7, 123.8, 20.7.

2-bromo-4-chloropyridine (3i)¹⁷

Yellow oil (32.4 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, *J* = 5.6 Hz, 1H), 7.53 (d, *J* = 1.6 Hz, 1H), 7.27 (dd, *J* = 5.2, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 145.5, 142.6, 128.1, 123.3.

2,4-dibromopyridine (3j)¹⁸

Yellow oil (32.1 mg, 45 % yield). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J* = 5.2 Hz, 1H), 7.69 (s, 1H), 7.42 (d, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 142.6, 140.0, 131.0, 126.2.

2-bromo-5-methylpyridine(3k)¹²

Light yellow oil (40% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.19 (s, 1H), 7.35 (d, J = 1.2 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 139.3, 139.0, 132.5, 127.5, 17.8.

2-bromo-5-phenylpyridine (3l)¹⁹

White solid (37.2 mg, 53% yield), mp 73–75 °C, (lit.¹⁹ mp 76–77 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.61 (d, J = 2.4 Hz, 1H), 7.75 (dd, J = 8.4, 2.8 Hz, 1H), 7.58–7.55 (m, 3H), 7.52–7.48 (m, 2H), 7.46–7.42 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.5, 140.9, 137.0, 136.5, 136.0, 129.3, 128.5, 128.0, 127.0.

methyl-6-bromonicotinate (3m)²⁰

Light yellow solid (29.1 mg, 45% yield), mp 107–109 °C, (lit.²¹ mp 108–110 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, J = 2.4 Hz, 1H), 8.11 (dd, J = 8.4, 2.4 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 151.4, 146.8, 139.2, 128.1, 125.3, 52.6.

2-bromo-6-methylpyridine (3n)¹²

Colorless oil (35% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.33 (m, 1H), 7.22 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 141.3, 138.6, 125.0, 122.1, 24.1.

2-bromo-3,5-dichloropyridine (3o)²²

White solid (41.5 mg, 61% yield), mp 39–40 °C, (lit.²² mp 40–41 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 2.4 Hz, 1 H), 7.75 (d, J = 2.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 146.4, 139.4, 137.7, 133.9, 131.4.

4-Phenylstyrene (**3p**)¹⁰

White solid (53.0 mg, 85% yield), mp 42–44 °C, (lit.¹⁰ mp 41–43 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 5.6 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.74–7.70 (m, 1H), 7.68–7.64, 7.58 (d, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 142.0, 137.4, 131.2, 129.0, 128.8, 128.7, 127.1, 121.2.

1,4-bis((3,5-dichloropyridin-2-yl)oxy)benzene (4)

White solid (176.8 mg, 88% yield), mp 156–158 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 5.6 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.74–7.70 (m, 1H), 7.68–7.64, 7.58 (d, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 142.0, 137.4, 131.2, 129.0, 128.8, 128.7, 127.1, 121.2. IR (KBr): v 3061, 1575, 1501, 1288, 1178, 842, 734 cm⁻¹. HRMS (ESI) calcd for [C₁₆H₉Cl₄N₂O₂, M+H]⁺: 402.9389, found: 402.9390.

3. References

- [1] W. Kijrungphaiboon, O. Chantarasriwong, W. Chavasiri, Tetrahedron Letter. 2012, 53, 674–677.
- [2] H. Yamanaka, T. Araki, T. Sakamoto, Chem. Pharm. Bull. 1988, 36, 2244–2247.
- [3] P. Narendar, B. Gangadasu, Ch. Ramesh, B. C. Raju, V. J. Rao, *Synthetic Commun.* 2004, 34, 1097–1113.
- [4] A. Honraedt, T. Gallagher, Synlett 2016, 27, 67–69.
- [5] E. Zhang, J. Tang, S. Li, P. Wu, J. E. Moses, K. B. Sharpless, Chem. Eur. J. 2016, 22, 5692–5697.
- [6] Z. Li, W. Zhu, J. Bao, X, Zou, Chem. Commun. 2014, 44, 1155–1164.
- [7] A. Puszko, Mang. Reson. Chem. 1992, 30, 271–271.
- [8] P. Zhong, H. Hu, S. Guo, Synthetic Commun. 2004, 34, 4301–4311.
- [9] O. Sugimoto, Y. Harada, K. Tanji, *Heterocycles* 2012, 86, 1583–1590.
- [10] M. Schlosser, F. Cottet, Eur. J. Org. Chem. 2002, 4181-4184.
- [11] H. P. Kokatla, P. F. Thomson, S. Bae, V. R. Doddi, M. K. Lakshman, J. Org. Chem. 2011, 76, 7842–7848.
- [12] K. K. Bhasin, P. Venugopalan, J. Singh, Phosphorus Sulfur. 2002, 177, 2579–2587.
- [13] J. Kan, S. Huang, J. Lin, M. Zhang, W. Su, Angew. Chem. Int. Ed. 2015, 54, 2199 –2203.
- [14] M. Schlosser, F. Cottet, Eur. J. Org. Chem. 2002, 4181-4184.
- [15] K. Menzel, E. L. Fisher, L. DiMichele, D. E. Frantz, T. D. Nelson, M. H. Kress, J. Org. Chem. 2006, 71, 2188–2191.
- [16] Y. Loidreau, P. Marchand, C. Dubouilh-Benard, M. Nourrisson, M. Duflos, O. Lozach, N. Loa &, L. Meijer, T. Besson, *Eur. J. Med. Chem.* 2012, 58, 171–183.
- [17] S. Choppin. P. Gros, Y. Fourt, Eur. J. Org. Chem. 2001, 603–606.
- [18] C. Sicre, M. Magdalena Cid, Org. Lett. 2005, 7, 5735–5739.
- [19] Q. Zhou, B. Zhang, L. Su, T. Jiang, R. Chen, T. Du, Y. Ye, J. Shen, G. Dai, D. Han, H. Jiang, *Tetrahedron* 2013, 69, 10996–11003.
- [20] N. D. Bogdan, M. Matache, V. M. Meier, C. Dobrota, I. Dumitru, G. D. Roiban, D. P. Funeriu, *Chem. Eur. J.* 2010, *16*, 2170–2180.
- [21] H. L. Bradlow, C. A. Vanderwerf, J. Org. Chem. 1949, 14, 509-513.
- [22] E. Marzi, A. Bigi, M. Schlosser, Eur. J. Org. Chem. 2001, 1371-1376.

7. Copies of ¹H and ¹³C NMR Spectra of Products

-0.00

¹³C NMR, 100 MHz, CDCl₃

149.71 148.38	139.68 137.48 137.00	129.28 128.35	122.57	77.47 77.15 76.83
57	\leq	57		

 $\bar{0}$

	- 8.32 - 8.31	7.38 7.26 7.26 7.25 7.25 7.25	0.00
	\checkmark		I
		N CI 2i	
	ĺ		
	1.00H	£10°1	
э. O	8.5 8.	7 7	0.0 -0.
¹³ C	C NMR	, 100 MHz, CDCl ₃	

23	85	99	r 9 4
152. 150.	145.	124	77.3 77.0 76.7
51	1	52	\mathbf{V}

$\begin{array}{c} \text{INMR}, 400 \text{ MHZ}, \text{CDCI}_{3} \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & &$	0.00
	ıl
	····
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1 ¹³ C NMR 100 MHz CDCL	. 0 0. 5 0. 0 -0. 5
$ \begin{array}{c} 137.21\\ 135.65\\ 135.65\\ 135.65\\ 135.65\\ 128.49\\ 128.49\\ 127.07\\ 76.75\\ $	

90 80 f1 (ppm)

-1.59

S28

ppm -1

- 0.00

59	28 7 2 2 2 2 8 7 2 2 8 7 2 2 8 7 2 2 8 7 2	208
48.	25.5.7.7.8 25.17.8	7.3 6.7
÷		
		\checkmark

150.27	142.33	138.45	128.29	77.34 77.02 76.70
1		I		

S32

8.28 8.28 8.27 8.27 7.72 7.72 7.23 7.23 7.23

32	7.138 7.15 7.15 7.13 7.13 7.13 7.13

8.63	8.62	8.60	8.60	8.59	8.59	8.15	\$.43 8.13	7.46 7.45	7.25
-	-	-	5	+	~ ~	+		5	

8.29 8.28	7.54 7.53	7.28 7.28 7.27 7.27 7.27
$\mathbf{\nabla}$	\leq	

¹³C NMR, 100 MHz, CDCl₃

150.61	145.51	142.58	128.12	123.34	77.35 77.03 76.71
1	I	1	I.	I	

148.48	140.89	136.04 129.25 128.54 128.03 127.02	77.38 77.06 76.75
1			

146.39	139.44 137.66	133.85 131.40
	51	17

 $\int_{-7.28}^{8.30} \int_{-7.70}^{8.30} \int_{-7.70}^{8.26} \int_{-7.70}^{8.26} \int_{-7.61}^{8.26} \int_{-7.28}^{-7.28} \int_{-7.28}^{-7.2$

¹³C NMR, 100 MHz, CDCl₃

145.31 142.04	37:43 128:80 128:70 127.07 121.18	77.39 77.08 76.76
	$ \searrow \lor \checkmark $	\checkmark

f1 (ppm)

