Supporting Information

Catalytic asymmetric synthesis of chiral phenols in ethanol with recyclable rhodium catalyst

Jian Yao, Na Liu, Long Yin, Junhao Xing, Tao Lu and Xiaowei Dou*

Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
Email: dxw@cpu.edu.cn

Contents

\qquad1. General Information.S2
2. Materials S2
3. A General Procedure for Table 1 S3
4. Procedures for Table 2 \& Table 3 S3
5. Procedures for Scheme 2 S4
6. Procedures for Scheme 3 S7
7. Procedures for Scheme 4 S7
8. Characterization of the Products S9
9. References S25
10. NMR Spectra S26
11. HPLC Charts S68

1. General Information

All air-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or argon. NMR spectra were recorded on Bruker AVANCE AV-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), Bruker AVANCE AV-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or Bruker AVANCE AV-300 spectrometer (300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts were reported in δ (ppm) referenced to the residual solvent peak of $\mathrm{CDCl}_{3}(\delta 7.26)$ for ${ }^{1} \mathrm{H}$ NMR and CDCl_{3} (δ 77.0) for ${ }^{13} \mathrm{C}$ NMR. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Coupling constants were reported in Hertz (Hz). Specific rotations were measured on an ANTON PAAR MCP 100 automatic polarimeter. High resolution mass spectra (HRMS) were obtained on Thermo Scientific LTQ Orbitrap XL (ESI). For thin layer chromatography (TLC), Yantai pre-coated TLC plates (HSGF 254) were used, and compounds were visualized with a UV light at 254 nm . Further visualization was achieved by staining with KMnO_{4} followed by heating. Column chromatography separations were performed on silica gel (300-400 mesh). Enantiomeric excesses (ee) were determined by HPLC analysis on SHIMADZU HPLC system with Daicel chiral columns.

2. Materials

Toluene was distilled over benzophenone ketyl under N_{2}. 1,4-Dioxane, 1,2-dichloroethane, EtOH and THF (Extra Dry, with molecular sieves, stabilized with BHT, water $\leq 50 \mathrm{ppm}$ (by K.F.)) were purchased from commercial supplier and used as received. Rhodium complex $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}^{[1]}$ was prepared according to the reported procedures. Catalysts $[\mathrm{RhCl}(\mathrm{L} 1)]_{2},{ }^{[2]}[\mathrm{RhCl}(\mathrm{L} 2)]_{2}{ }^{[2]}$, $[\mathrm{RhCl}(\mathrm{L} 3)]_{2}{ }^{[3]}$ and $[\operatorname{RhCl}((R, R)-\mathrm{Ph}-\text { bod })]_{2}{ }^{[4]}$ were prepared according to the literature procedures. All the organoboronic acids were purchased from commercial suppliers and used as received.

3. A General Procedure for Table 1

$[\mathrm{RhCl}(\mathrm{L})]_{2}(1.0 \mu \mathrm{~mol}, 1 \mathrm{~mol} \% \mathrm{Rh}), \mathbf{1 a}(0.20 \mathrm{mmol})$ and 2a $(0.30 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. Solvent was added, and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 2 h . Upon completion, the mixture was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/EtOAc (v/v=3/1) to give 3a.

4. Procedures for Table 2 \& Table 3

1

2

3
$[\mathrm{RhCl}(\mathrm{L} 1)]_{2}(0.95 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 1 \mathrm{~mol} \% \mathrm{Rh})$ and $2(0.30 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. EtOH (0.4 mL), $1(0.20 \mathrm{mmol})$ and another portion of EtOH (0.6 mL) was added successively, and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the solution was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/EtOAc (v/v=3/1) to give 3 .

A general procedure for dehydration of hemiacetal product

$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{mmol})$, the hemiacetal product (0.20 mmol) and $4 \AA \mathrm{MS}(0.20 \mathrm{~g})$ were placed in an oven-dried Schlenk tube under nitrogen. Toluene (1.0 mL) was added, and the mixture was then heated to $100{ }^{\circ} \mathrm{C}$ for 3 h . Upon completion, the mixture was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/EtOAc $(\mathrm{v} / \mathrm{v}=20 / 1)$ to give chromene.

5. Procedures for Scheme 2

$\mathrm{BF}_{3} . \mathrm{OEt}_{2}(74.0 \mu \mathrm{~L}, 0.60 \mathrm{mmol})$ and enantioenriched $41(49.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 97 \%$ ee) were placed in an oven-dried Schlenk tube under nitrogen. Toluene (1.0 mL) was added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 12 h . Upon completion, the mixture was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/EtOAc ($\mathrm{v} / \mathrm{v}=10 / 1$) to give $6(52.2 \mathrm{mg}, 90 \%$ yield, 97% ee) as a pale yellow solid.

Enantioenriched $\mathbf{4 m}$ ($60.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 99 \%$ ee) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and then silane (3.0 mmol) was added followed by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.80 \mathrm{mmol})$. After 1 h , the reaction was warmed
to rt and the solvent was removed. The residue was purified by column chromatography with petroleum ether/EtOAc (v/v=20/1) to give $7(51.4 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1,99 \%$ ee) as a white solid.

$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol})$ and enantioenriched $4 \mathrm{o}(57.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 92 \%$ ee $)$ were placed in an oven-dried Schlenk tube under nitrogen. Toluene (1.0 mL) was added and the reaction was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h . Upon completion, the mixture was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/EtOAc (v/v=4/1) to give $8(45.6 \mathrm{mg}, 95 \%$ yield, 91% ee) as a white solid.

81% for two steps, 96% ee
Enantioenriched 4d ($45.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 96 \%$ ee) was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$, and $\mathrm{NaBH}_{4}(0.40 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. Then the reaction was allowed to warm to rt and stirred for 2 h . Upon completion, the solvent was removed on a rotary evaporator, the residue was subjected to silica gel chromatography with petroleum ether/EtOAc (v/v = 1/1) to give 9, which was directly dissolved in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (1.0 $\mathrm{mL})$, and $\mathrm{PhI}(\mathrm{OAc})_{2}(77.3 \mathrm{mg}, 0.24 \mathrm{mmol})$ was added. The reaction was stirred at rt for 2 h . The mixture was purified by flash gel column chromatography eluting with petroleum ether $/ E t O A c(v / v=10: 1)$ to give $10(36.6 \mathrm{mg}, 81 \%$ yield, 96% ee $)$ as a pale yellow solid.

Enantioenriched 4b ($51.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 99 \%$ ee) was dissolved in $\mathrm{MeOH}(2.0$ $\mathrm{mL}) / \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.80 \mathrm{mmol})$ was added. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 6 h . Upon completion, it was cooled to room temperature and $2 \mathrm{~N} \mathrm{HCl}(10$ mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL} *)$. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under vacuum to give the crude carboxylic acid, which was used for the next step without further purification. Intermediate $\mathbf{1 2}$ was dissolved in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(1.0 \mathrm{~mL})$, and $\mathrm{PhI}(\mathrm{OAc})_{2}$ ($77.3 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added. The reaction mixture was stirred at rt for 1 h . The solvent was removed on a rotary evaporator, and the residue was purified by flash gel column chromatography eluting with petroleum ether $/ E t O A c(v / v=2: 1$) to give $\mathbf{1 3}$ ($45.6 \mathrm{mg}, 95 \%$ yield, 99% ee) as a pale yellow solid.

Enantioenriched $4 n\left(76.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 96 \%\right.$ ee) was reacted with $\mathrm{PhI}(\mathrm{OAc})_{2}$ ($77.3 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 4 h . Upon completion, the solvent was removed on a rotary evaporator, the residue was subjected to silica gel chromatography with petroleum ether/EtOAc ($\mathrm{v} / \mathrm{v}=10 / 1$) to get 14 . Then intermediate 14, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.80 \mathrm{mmol})$ and TBAB $(0.20 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ were added, and the reaction was stirred at $80{ }^{\circ} \mathrm{C}$ for 6 h . Upon completion, the mixture was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel
chromatography with petroleum ether/EtOAc (v/v=10/1) to give 15 ($61.4 \mathrm{mg}, 93 \%$ yield, $19: 1 \mathrm{dr}, 96 \% \mathrm{ee})$ as a pale yellow solid. The configuration of the newly generated stereocenter of $\mathbf{1 5}$ was assigned by NOE study (see part 9 , NMR spectra).

6. Procedures for Scheme 3

$[\mathrm{RhCl}(\mathrm{L} 3)]_{2}(0.8 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 1 \mathrm{~mol} \% \mathrm{Rh}), 1(0.20 \mathrm{mmol})$ and $2(0.30 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. EtOH (0.4 mL), KOH ($0.56 \mathrm{mg}, 10 \mu \mathrm{~mol}$, in $0.1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) and another portion of $\mathrm{EtOH}(0.6 \mathrm{~mL})$ were added successively, and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the mixture was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator. The residue was dissolved in THF (0.5 $\mathrm{mL})$ and transferred to an oven-dried Schlenk tube containing $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(0.60 \mathrm{mmol})$, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(1.0 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(0.60 \mathrm{mmol})$ under nitrogen. Then 0.5 mL of THF was added and the reaction was stirred at $70^{\circ} \mathrm{C}$ for 12 h . The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/ $\operatorname{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(\mathrm{v} / \mathrm{v}=70 / 30 / 1)$ to give the product.

$[\mathrm{RhCl}(\mathrm{L} 3)]_{2}(0.8 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 1 \mathrm{~mol} \% \mathrm{Rh}), 1 \mathbf{q}(0.20 \mathrm{mmol})$ and $2-\mathrm{OH}-5-\mathrm{Me}-\mathrm{PhB}(\mathrm{OH})_{2}(0.80 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. EtOH (0.4 mL), $\mathrm{KOH}\left(0.56 \mathrm{mg}, 10 \mu \mathrm{~mol}\right.$, in $\left.0.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ and another portion of $\mathrm{EtOH}(0.6 \mathrm{~mL})$ were added successively, and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the mixture was passed through a short pad of silica gel
with EtOAc as the eluent. The solvent was removed on a rotary evaporator. The residue was dissolved in THF $(0.5 \mathrm{~mL})$ and transferred to an oven-dried Schlenk tube containing $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(0.60 \mathrm{mmol}),{ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(1.0 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(0.60 \mathrm{mmol})$ under nitrogen. Then 0.5 mL of THF was added and the reaction was stirred at $70{ }^{\circ} \mathrm{C}$ for 12 h . The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/EtOAc/Et ${ }_{3} \mathrm{~N}(\mathrm{v} / \mathrm{v}=$ $70 / 30 / 1$) to give the product.

7. Procedures for Scheme 4

$[\mathrm{RhCl}(\mathrm{L} 1)]_{2}(9.5 \mathrm{mg}, 1 \mathrm{~mol} \% \mathrm{Rh}), \mathbf{1 a}(2.0 \mathrm{mmol})$ and $\mathbf{2 a}(3.0 \mathrm{mmol})$ were placed in an oven-dried Schlenk tube under nitrogen. EtOH (4.0 mL) was added, and the reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 3 h . Upon completion, the solution was passed through a short pad of silica gel with EtOAc as the eluent. The solvent was removed on a rotary evaporator, and the crude product was subjected to silica gel chromatography with petroleum ether/EtOAc ($\mathrm{v} / \mathrm{v}=3 / 1$ to $2 / 1$) to give $\mathbf{3}$ and a mixture of recovered catalyst and phenol.

Recycling of the catalyst: 1a (2.0 mmol) and 2a (3.0 mmol) were placed in an oven-dried Schlenk tube under nitrogen, an ethanol solution (4.0 mL) of the recovered catalyst with phenol was added. The reaction was stirred at $60^{\circ} \mathrm{C}$ for 3 h . The workup was the same as above.

8. Characterization of the Products

(S)-4-(3-Hydroxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (3a)

Compound 3a. (99\% yield, 97% ee (S)). White solid, 51.2 mg at 0.20 mmol scale. The ee of $\mathbf{3 a}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane $/$ isopropanol $=80 / 20,210$ $\left.\mathrm{nm}, t_{\text {major }}=9.0 \mathrm{~min}(S), t_{\text {minor }}=7.6 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-0.85(c 0.47$, $\mathrm{CH}_{3} \mathrm{OH}$) for 97% ee $(S) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.05$ (s , $3 \mathrm{H}), 3.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.70(\mathrm{~m}, 4 \mathrm{H}), 7.02-7.07(\mathrm{~m}, 3 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO) $\delta 30.6,45.2,49.2,113.4,114.9,115.5,118.4,128.9,129.7$, 135.1, 146.9, 156.1, 157.7, 207.3. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 279.0992, found 279.0995.
(S)-4-(3-Hydroxy-4-methoxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (3b)

ee $(S) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.03(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.70$ (s, 3H), 4.23 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.68$ (m, 4H), $6.76-6.80(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 30.1,44.2,49.0$, 55.7, 112.2, 115.0, 117.7, 128.3, 135.0, 137.7, 145.9, 146.3, 155.5, 206.9. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$309.1097, found 309.1098. (S)-4-(4-Hydroxy-3-methoxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (3c)

Compound 3c. (99\% yield, 96% ee (S)). White solid, 57.2 mg at 0.20 mmol scale. The ee of $\mathbf{3 c}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=70 / 30,210 \mathrm{~nm}, t_{\text {major }}=11.8 \mathrm{~min}(S)$, $\left.t_{\text {minor }}=12.8 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-6.7\left(c 1.1, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 96% ee
$(S) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 4.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 30.2$, 44.6, 49.2, 55.7, 112.0, 115.1, 115.4, 119.6, 128.3, 135.2, 136.0, 144.8, 147.4, 155.5, 207.0. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 309.1097$, found 309.1098.
(S)-4-(3-Chloro-4-hydroxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (3d)

Compound 3d. (87% yield, 95% ee (S)). White solid, 50.9 mg at 0.20 mmol scale. The ee of $\mathbf{3 d}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=8.7 \mathrm{~min}(S), t_{\text {minor }}$ $=9.6 \mathrm{~min}(R)) ;[\alpha]^{20}{ }_{\mathrm{D}}+1.1\left(c 0.45, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 95% ee (S). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.06$ (s, 3H), 3.15 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.30(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.09(\mathrm{~m}, 3 \mathrm{H})$, $7.21(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 9.89(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) δ 30.1, 43.6, 48.7, 115.1, 116.5, 119.3, 126.9, 128.3, 128.5, 134.6, 137.0, 151.1, 155.6, 206.7. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NaClO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$313.0602, found 313.0598. (S)-4-(3,5-Dibromo-4-hydroxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (3e)

Compound 3e. (85\% yield, 95% ee (S)). White solid, 70 mg at 0.20 mmol scale. The ee of $\mathbf{3 e}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=8.9 \mathrm{~min}(S), t_{\text {minor }}$ $=11.0 \min (R)) ;[\alpha]^{20}{ }_{\mathrm{D}}-2.0\left(c 0.68, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 95% ee (S). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.07$ ($\mathrm{s}, 3 \mathrm{H}$), $3.14-3.27$ (m, $2 \mathrm{H}), 4.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ $(\mathrm{s}, 2 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) δ 30.0, 43.2, 48.2, 111.8, 115.2, 128.3, 131.0, 134.0, 139.8, 148.7, 155.7, 206.5. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Na}^{79} \mathrm{Br}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$434.9202, found 434.9207.

Compound 3f. (99\% yield, 97% ee (R)). White solid, 48 mg at 0.20 mmol scale. The ee of $\mathbf{3 f}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20$, $\left.210 \mathrm{~nm}, t_{\text {major }}=8.2 \mathrm{~min}(R), t_{\text {minor }}=7.3 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+0.85(c$ $0.45, \mathrm{CH}_{3} \mathrm{OH}$) for 97% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) δ $2.05(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2H), $7.08-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 4 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , d_{6}-DMSO) $\delta 30.6,45.3,49.1,115.6,126.4,127.9,128.8,128.9,135.1,145.5,156.1$, 207.3. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$263.1043, found 263.1040.
(R)-4-(4-Hydroxyphenyl)-4-(4-(trifluoromethyl)phenyl)butan-2-one ($\mathbf{3 g}$)

Compound 3g. (99\% yield, 96\% ee (R)). White solid, 61.6 mg at 0.20 mmol scale. The ee of $\mathbf{3 g}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=5.4 \mathrm{~min}(R)$, $\left.t_{\text {minor }}=6.7 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+5.9\left(c 0.47, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 96% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.15-$ $3.36(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, d_{6}-DMSO) $\delta 30.5,45.0,48.6,115.7,125.6(\mathrm{q}, J=3.7 \mathrm{~Hz}), 127.0,127.3,128.7$, 128.9, 134.2, 150.4, 156.3, 206.9. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NaF}_{3} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 331.0916, found 331.0915 .
(S)-4-(4-Chlorophenyl)-4-(4-hydroxyphenyl)butan-2-one (3h)

Compound 3h. (99\% yield, 97% ee (S)). White solid, 54.8 mg at 0.20 mmol scale. The ee of $\mathbf{3 h}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=6.8 \mathrm{~min}(S), t_{\text {minor }}$ $=6.5 \mathrm{~min}(R)) ;[\alpha]^{20}{ }_{\mathrm{D}}+6.2\left(c 0.54, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 97% ee $(S) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.05(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.28(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=7.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 4 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 30.6,44.5,48.9,115.7,128.6,128.8,129.7,131.0$, 134.6, 144.6, 156.2, 207.0. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NaClO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$297.0653, found 297.0645.
(S)-4-(3-Bromophenyl)-4-(4-hydroxyphenyl)butan-2-one (3i)

Compound 3i. (99\% yield, 96% ee). Pale yellow solid, 63.6 mg at 0.20 mmol scale. The ee of $\mathbf{3 i}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=6.7 \mathrm{~min}(S), t_{\text {minor }}$ $=8.4 \mathrm{~min}(R)) ;[\alpha]^{20}{ }_{\mathrm{D}}-0.78\left(c 0.52, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 96% ee (S).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.33(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.25$ (m, 1H), 7.26 $-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 9.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, d_{6}$-DMSO) $\delta 30.6$, 44.8, 48.6, 115.7, 122.1, 126.9, 128.9, 129.3, 130.7, 130.9, 134.4, 148.5, 156.3, 207.0. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Na}^{79} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$341.0148, found 341.0149. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Na}^{81} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$343.0127, found 343.0131.

(R)-4-Cyclohexyl-4-(4-hydroxyphenyl)butan-2-one (3j)

Compound 3j. (99\% yield, 99% ee (R)). White solid, 49.2 mg at 0.20 mmol scale. The ee of $\mathbf{3} \mathbf{j}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20$, $\left.210 \mathrm{~nm}, t_{\text {major }}=7.4 \mathrm{~min}(R), t_{\text {minor }}=9.9 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+25(c 0.48$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$ for 99% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 0.68-$ $1.41(\mathrm{~m}, 7 \mathrm{H}), 1.55-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.82(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO) $\delta 25.8$, $25.95,25.98,30.0,30.5,42.7,45.6,46.7,114.7,128.9,133.3,155.4,207.7$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$269.1512, found 269.1509.
(S)-4-(4-Hydroxyphenyl)octan-2-one ($\mathbf{3 k}$)

Compound 3k. (99\% yield, 97% ee (S)). Colorless oil, 44.0 mg at 0.20 mmol scale. The ee of $\mathbf{3 k}$ was determined by HPLC
analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10,210 \mathrm{~nm}$, $\left.t_{\text {major }}=7.1 \mathrm{~min}(S), t_{\text {minor }}=7.7 \mathrm{~min}(R)\right) ;[\alpha]^{20} \mathrm{D}+14\left(c 0.55, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 97% ee (S). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.34-$ $1.51(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.82-3.0(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) δ 13.8, 22.0, 29.0, 30.1, 35.9, 39.7, 50.2, 115.0, 128.1, 134.7, 155.4, 207.4. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$243.1356, found 243.1356.

(R)-4-(3-Chloro-4-hydroxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (31)

Compound 31. (96% yield, 97% ee). White solid, 55.7 mg at 0.20 mmol scale. The ee of $\mathbf{3 1}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=9.4 \mathrm{~min}(R), t_{\text {minor }}$ $=8.6 \mathrm{~min}(S)) ;[\alpha]^{20}{ }_{\mathrm{D}}-1.8\left(c 0.66, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 97% ee (R). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.05$ (s, 3H), 3.15 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.29 (t, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.12(\mathrm{~m}, 3 \mathrm{H})$, $7.21(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, d_{6}$-DMSO) δ $30.6,44.1,49.1,115.6,116.9,119.8,127.4,128.8,129.0,135.1,137.5,151.6,156.1$, 207.3. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NaClO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 313.0602$, found 313.0598 . (R)-4-(4-Hydroxy-2-methylphenyl)-4-(4-hydroxyphenyl)butan-2-one (3m)

Compound 3m. (84\% yield, >99\% ee). White solid, 45.4 mg at 0.20 mmol scale. The ee of $\mathbf{3 m}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=7.1 \mathrm{~min}(R), t_{\text {minor }}$ $=6.3 \mathrm{~min}(S)) ;[\alpha]^{20}{ }_{\mathrm{D}}-52\left(c 0.51, \mathrm{CH}_{3} \mathrm{OH}\right)$ for $>99 \%$ ee (R). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.17$ ($\left.\mathrm{s}, 3 \mathrm{H}\right), 2.97-3.15(\mathrm{~m}, 2 \mathrm{H}), 4.44$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , d_{6}-DMSO) $\delta 20.0,30.6,40.4,50.0,113.1,115.4,117.5,127.6,129.0,133.4,135.1$,
137.0, 155.6, 155.8, 207.5. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$293.1148, found 293.1146.
(R)-4-(3-Hydroxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (ent-3a)

Compound ent-3a. (99\% yield, 96% ee (R)). White solid, 51.2 mg at 0.20 mmol scale. The ee of ent-3a was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=7.2 \mathrm{~min}(R), t_{\text {minor }}$ $=8.6 \mathrm{~min}(S)) ;[\alpha]^{20}{ }_{\mathrm{D}}+0.52\left(c 0.44, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 96% ee $(R) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.05(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.64$ (m, 1H), $6.64-6.76(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.14(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $29.2,45.4,49.2,112.8,114.3,114.8,118.5,128.4,129.1,134.9,146.2,155.4,157.1$, 209.2. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$279.0992, found 279.0995.

(R)-4-(4-Fluoro-3-hydroxyphenyl)-4-(4-hydroxyphenyl)butan-2-one (3n)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.05$ (s, 3H), 3.11 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.27 (t, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=11.3$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , d_{6}-DMSO) $\delta 30.6,44.5,49.2,115.6,116.1(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 117.4(\mathrm{~d}, J=2.4 \mathrm{~Hz})$, $118.4(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 128.8,135.0,142.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 144.8(\mathrm{~d}, J=12.4 \mathrm{~Hz})$, 151.1 (d, $J=239.7 \mathrm{~Hz}$), 156.1, 207.3. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NaFO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 297.0897, found 297.0899.

(S)-4-(4-Hydroxyphenyl)-4-phenylbutan-2-one (ent-3f)

Compound ent-3f. (99\% yield, 94% ee (S)). White solid, 48 mg at 0.20 mmol scale. The ee of enti-3f was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$,
hexane/isopropanol $\left.=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=7.3 \mathrm{~min}(S), t_{\text {minor }}=8.6 \mathrm{~min}(R)\right) ;[\alpha]^{20} \mathrm{D}$ -1.3 (c $\left.0.44, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 94% ee $(S) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.05(\mathrm{~s}, 3 \mathrm{H})$, 3.13 - 3.26 (m, 2H), 4.38 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.68 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 4 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, d_{6}$-DMSO) $\delta 30.6,45.3$, 49.1, 115.6, 126.4, 127.9, 128.8, 128.9, 135.1, 145.5, 156.1, 207.3. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$263.1043, found 263.1040 .
(S)-4-(3-Hydroxyphenyl)-4-phenylbutan-2-one (3p)

Compound 3p. (98\% yield, 96% ee (S)). White solid, 47.1 mg at 0.20 mmol scale. The ee of $\mathbf{3 p}$ was determined by HPLC analysis:
(Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20$, $\left.210 \mathrm{~nm}, t_{\text {major }}=7.7 \mathrm{~min}(S), t_{\text {minor }}=6.9 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-1.1(c$ $0.56, \mathrm{CH}_{3} \mathrm{OH}$) for 96% ee $(S) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) δ $2.07(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.60(\mathrm{~m}, 1 \mathrm{H})$, $6.67-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.19(\mathrm{~m}$, $1 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 4 \mathrm{H}), 9.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, d_{6}-DMSO) $\delta 30.6,45.9$, 48.8, 113.58, 115.1, 118.6, 126.5, 128.0, 128.8, 129.8, 144.9, 146.3, 157.8, 207.1. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$263.1043, found 263.1040. (R)-4-(4-Hydroxyphenyl)-4-(4-methoxyphenyl)butan-2-one (3q)

Compound 3q. (99\% yield, 97% ee (R)). White solid, 54.1 mg at 0.20 mmol scale. The ee of $\mathbf{3 q}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=8.3 \mathrm{~min}(R), t_{\text {minor }}$ $=9.5 \mathrm{~min}(S)) ;[\alpha]^{20} \mathrm{D}^{2}-2.5\left(c \quad 0.52, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 97% ee (R). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $4.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) δ 30.1, 44.0, 49.0, 54.9, 113.6, 115.0, 128.2, 128.3, 135.0, 137.0, 155.5, 157.4, 206.8. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$293.1148, found 293.1149.

Compound 3r. (99\% yield, 97% ee (S)). White solid, 50.8 mg at 0.20 mmol scale. The ee of $\mathbf{3 r}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210$ $\left.\mathrm{nm}, t_{\text {major }}=6.9 \mathrm{~min}(S), t_{\text {minor }}=6.3 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-2.7(c 0.52$, $\mathrm{CH}_{3} \mathrm{OH}$) for 97% ee $(S) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.06(\mathrm{~s}$, $3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.57 (dd, $J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-$ $7.09(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 2 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, d_{6}$-DMSO) δ $21.0,30.6,45.5,48.8,113.5,115.0,118.5,127.9,129.4,129.7,135.5,141.8,146.5$, 157.8, 207.2. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$277.1199, found 277.1199.

(R)-3-(4-Hydroxyphenyl)-1,3-diphenylpropan-1-one (4a)

Compound 4a. (99\% yield, 95% ee (R)). White solid, 60.4 mg at 0.20 mmol scale. The ee of $\mathbf{4 a}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10,210 \mathrm{~nm}, t_{\text {major }}=15.0 \mathrm{~min}(R)$, $\left.t_{\text {minor }}=14.1 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+3.1\left(c 0.58, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 95% ee (R). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 3.76-3.90(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, d_{6}$-DMSO) $\delta 44.1,45.5$, 115.6, 126.3, 128.0, 128.7, 129.05, 129.14, 133.6, 135.4, 137.3, 145.8, 156.1, 198.7. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 325.1199$, found 325.1200.

Methyl (R)-3-(4-hydroxyphenyl)-3-phenylpropanoate (4b)

$+1.5\left(c 0.55, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 99% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 3.00-3.14$ $(\mathrm{m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.71(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.18(\mathrm{~m}$, 3H), $7.24-7.31(\mathrm{~m}, 4 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, d_{6}-DMSO) $\delta 40.2,46.3$, 51.7, 115.6, 126.6, 127.8, 128.8, 134.6, 144.9, 156.2, 172.2. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$279.0992, found 279.0987. (R)-N-benzyl-3-(4-hydroxyphenyl)-3-phenylpropanamide (4c)

Compound 4c. (92\% yield, 98% ee (R)). White solid, 60.9 mg at 0.20 mmol scale. The ee of $\mathbf{4 c}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=70 / 30$, $\left.210 \mathrm{~nm}, t_{\text {major }}=6.6 \mathrm{~min}(R), t_{\text {minor }}=6.0 \mathrm{~min}(S)\right) ;[\alpha]^{20} \mathrm{D}+0.2(c$ $\left.0.49, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 98% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 2.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $4.14-4.29$ (m, 2H), 4.45 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 4 \mathrm{H}), 8.34$ (t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 41.7,41.7,46.2$, $115.1,125.9,126.4,126.7,127.5,128.0,128.2,128.5,134.4,139.2,144.8,155.7$, 170.3. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 332.1645$, found 332.1641.

(R)-3-(4-Hydroxyphenyl)-3-phenylpropanal (4d)

Compound 4d. (91\% yield, 96% ee (R)). White solid, 41.2 mg at 0.20 mmol scale. The ee of $\mathbf{4 d}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20$, $\left.210 \mathrm{~nm}, t_{\text {major }}=8.3 \mathrm{~min}(R), t_{\text {minor }}=9.4 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-10(c$ $\left.0.40, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 96% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.08$ - $3.22(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.80(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.15(\mathrm{~m}, 2 \mathrm{H})$, $7.19-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 2 \mathrm{H}), 9.75(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.2,49.6,115.7,126.7,127.6,128.8,128.9,135.0,143.6,154.5$, 202.4. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$249.0886, found 249.0885.
(R)-3-(4-Hydroxyphenyl)-3-phenylpropanenitrile (4e)

Compound 4e. (67\% yield, 80% ee (R)). White solid, 41.2 mg at 0.20 mmol scale. The ee of $\mathbf{4 e}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10$,
$\left.210 \mathrm{~nm}, t_{\text {major }}=14.3 \mathrm{~min}(R), t_{\text {minor }}=13.5 \mathrm{~min}(S)\right) ;[\alpha]^{20} \mathrm{D}+0.98\left(c 0.31, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 80% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 3.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.32(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.29-7.38(\mathrm{~m}, 4 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, d_{6}$-DMSO) $\delta 23.4,46.3,115.7$, 120.3, 127.2, 127.8, 128.96, 128.97, 133.1, 143.4, 156.7. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NaNO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 246.0889$, found 246.0894.

Methyl (R)-5-(4-hydroxyphenyl)-3-oxo-5-phenylpentanoate (4f)

Compound 4f. (99\% yield, >99\% ee (R)). White solid, 59.6 mg at 0.20 mmol scale. The ee of $\mathbf{4 f}$ was determined by HPLC analysis: (Chiralcel IB column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=85 / 15,210 \mathrm{~nm}, t_{\text {major }}=19.4 \min (R)$, $\left.t_{\text {minor }}=46.1 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+6.3\left(c 0.40, \mathrm{CH}_{3} \mathrm{OH}\right)$ for $>99 \%$ ee $(R) .{ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO) $\delta 3.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.65(\mathrm{~m}, 5 \mathrm{H}), 4.37(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 4 \mathrm{H}$), $9.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 44.3,48.0,48.8$, 51.7, 115.1, 125.9, 127.3, 128.2, 128.3, 134.3, 144.7, 155.6, 167.4, 201.5. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$321.1097, found 321.1098.

Dimethyl (R)-(4-(4-hydroxyphenyl)-2-oxo-4-phenylbutyl)phosphonate ($\mathbf{4 g}$)

Compound 4g. (96% yield, 96% ee (R)). White solid, 66.8 mg at 0.20 mmol scale. The ee of $\mathbf{4 g}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=15.2 \mathrm{~min}(R)$, $\left.t_{\text {minor }}=14.2 \min (S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+2.5\left(c 0.52, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 96% ee $(R) .{ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO) $\delta 3.20-3.38(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 40.8,44.1,49.1,52.5$, 52.5, 125.9, 127.4, 128.2, 128.4, 134.4, 144.8, 155.6, 200.20, 200.24. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+} 349.1199$, found 349.1203.

(R)-3-(4-Hydroxyphenyl)cyclohexan-1-one (4h)

Compound 4h. (99\% yield, 98% ee (R)). White solid, 38.1 mg at 0.20 mmol scale. The ee of $\mathbf{4 h}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane $/$ isopropanol $=80 / 20$, $\left.210 \mathrm{~nm}, t_{\text {major }}=10.0 \mathrm{~min}(R), t_{\text {minor }}=11.1 \mathrm{~min}(S)\right) ;[\alpha]^{20} \mathrm{D}+6.4(c$ $\left.0.39, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 98% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 1.55-1.92(\mathrm{~m}, 3 \mathrm{H})$, $1.93-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.20$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 25.4,33.0,40.9,43.6,49.1,115.6,127.9$, 135.6, 156.2, 210.7. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$191.1067, found 191.1061.

(R)-3-(4-Hydroxyphenyl)cyclopentan-1-one (4i)

Compound 4i. (99% yield, 99% ee (R)). White solid, 35.2 mg at 0.20 mmol scale. The ee of $\mathbf{4 i}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10,210$ $\left.\mathrm{nm}, t_{\text {major }}=15.1 \mathrm{~min}(R), t_{\text {minor }}=14.1 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+74(c 0.42$, $\mathrm{CH}_{3} \mathrm{OH}$) for 99% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-Acetone) $\delta 2.29-$ $2.47(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.90-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.91(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , d_{6}-Acetone) $\delta 32.1,39.2,42.3,46.4,116.0,128.6,135.4,156.7,217.4$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$199.0730, found 199.0730.

(R)-4-(4-Hydroxyphenyl)tetrahydro-2H-pyran-2-one (4j)

Compound 4j. (98% yield, 84% ee (R)). White solid, 37.7 mg at 0.20 mmol scale. The ee of $\mathbf{4} \mathbf{j}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=70 / 30,210$ $\left.\mathrm{nm}, t_{\text {major }}=19.0 \mathrm{~min}(R), t_{\text {minor }}=23.5 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-6.3(c 0.33$, $\mathrm{CH}_{3} \mathrm{OH}$) for $84 \%(R) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-Acetone) $\delta 1.94-2.17$ $(\mathrm{m}, 2 \mathrm{H}), 2.51-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.29(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.33$ $(\mathrm{m}, 2 \mathrm{H}), 6.63-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,
d_{6}-Acetone) $\delta 30.4,36.6,37.7,68.3,115.4,127.6,134.9,156.2,170.0$. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$215.0679, found 215.0680.

(R)-3-(3-Hydroxyphenyl)-1,3-diphenylpropan-1-one (4k)

Compound 4k. (99\% yield, 94% ee (R)). White solid, 60.4 mg at 0.20 mmol scale. The ee of $\mathbf{4 k}$ was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10,210$ $\left.\mathrm{nm}, \mathrm{t}_{\text {major }}=16.1 \min (R), t_{\text {minor }}=12.8 \min (S)\right) ;[\alpha]^{20} \mathrm{D}-2.3\left(c 0.60, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 94% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 3.84(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.61(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, d_{6}-DMSO) $\delta 43.4,45.7,113.0,114.7,118.2,126.0,127.6,128.0,128.2,128.6$, 129.2, 133.1, 136.8, 144.6, 146.0, 157.3, 197.9. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 325.1199$, found 325.1200.
(R)-3-Cyclohexyl-3-(3-hydroxyphenyl)-1-phenylpropan-1-one (4I)

Compound 41. (99\% yield, 97% ee (R)). White solid, 61.6 mg at 0.20 mmol scale. The ee of $\mathbf{4 1}$ was determined by HPLC analysis: (Chiralcel IB column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10,254 \mathrm{~nm}, t_{\text {major }}=5.3 \mathrm{~min}(R), t_{\text {minor }}$ $=9.3 \mathrm{~min}(S)) ;[\alpha]^{20} \mathrm{D}+11\left(c 0.47, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 97% ee $(R) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.77-1.33(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.92(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.22$ $(\mathrm{m}, 1 \mathrm{H}), 3.25-3.50(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.80(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.97(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 26.4,26.6,30.9,31.4,42.6,43.1,47.2,113.3,115.6,120.4$, 128.2, 128.6, 129.2, 133.1, 137.1, 145.5, 155.8, 200.9. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 331.1669$, found 331.1668.
(S)-3-(2-Bromophenyl)-3-(4-hydroxyphenyl)-1-phenylpropan-1-one (4n)

Compound 4n. (99\% yield, 95% ee (S)). White solid, 76.0 mg at 0.20 mmol scale. The ee of $\mathbf{4 n}$ was determined by HPLC
analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}$, $\left.t_{\text {major }}=7.2 \mathrm{~min}(S), t_{\text {minor }}=7.6 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-0.55\left(c 0.73, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 95% ee (S). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.49-3.66(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}$, $1 \mathrm{H}), 6.49-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.86-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 44.3,44.5,115.6,124.8,127.7,128.0,128.2,128.8,129.3,133.4,133.5$, 133.9, 136.7, 143.4, 154.6, 198.8. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Na}^{79} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 403.0304, found 403.0313. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Na}^{81} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 405.0284, found 405.0297.

Ethyl (S)-3-(2-hydroxyphenyl)-3-(4-hydroxyphenyl)propanoate (40)

Compound 4o. (98% yield, 92% ee (S)). White solid, 56.1 mg at 0.20 mmol scale. The ee of $\mathbf{4 o}$ was determined by HPLC analysis: (Chiralcel IB column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210 \mathrm{~nm}, t_{\text {major }}=6.7 \mathrm{~min}(S), t_{\text {minor }}$ $=10.5 \min (R)) ;[\alpha]^{20}{ }_{\mathrm{D}}-27\left(c 0.57, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 92% ee (S). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 1.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.95(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.90-7.02(\mathrm{~m}$, $1 \mathrm{H}), 7.03-7.18(\mathrm{~m}, 3 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, d_{6}-\mathrm{DMSO}\right) \delta$ $14.4,39.66,39.74,60.0,115.3,115.5,119.3,127.4,128.0,129.1,131.0,134.2,154.8$, 156.0, 171.9. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$309.1097, found 309.1102.

(R)-2-Methyl-4-phenyl-4H-chromene (5a)

Compound 5a. (99\% yield, $>99 \%$ ee (R)). White solid, 44.4 mg at 0.20 mmol scale. The ee of $\mathbf{5 a}$ was determined by HPLC analysis: (Chiralcel IB column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane $/$ isopropanol $=98 / 2,254$ $\left.\mathrm{nm}, t_{\text {major }}=4.4 \min (R), t_{\text {minor }}=4.1 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+107(c 0.31$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$ for $>99 \%$ ee $(R) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 1.95(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=4.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.99(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.23(\mathrm{~m}, 4 \mathrm{H})$, $7.28-7.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, d_{6}$-DMSO) $\delta 18.8,39.7,100.4,116.0$,
123.0, 123.2, 126.3, 127.5, 127.8, 128.4, 129.6, 146.5, 146.9, 150.4. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$223.1117, found 223.1112.

(R)-2,4-Diphenyl-4H-chromene (5b)

Compound 5b. (99% yield, 99% ee (R)). White solid, 56.8 mg at 0.20 mmol scale. The ee of $\mathbf{5 b}$ was determined by HPLC analysis: (Chiralcel IB column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=98 / 2,254 \mathrm{~nm}, t_{\text {major }}=5.2 \mathrm{~min}(R), t_{\text {minor }}$ $=4.9 \mathrm{~min}(S)) ;[\alpha]^{20}{ }_{\mathrm{D}}+0.26\left(c 0.49, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 99% ee $(R) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, d_{6}-DMSO) $\delta 4.90(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.06(\mathrm{~m}, 2 \mathrm{H})$, 7.14 - 7.24 (m, 3H), 7.27 - 7.35 (m, 4H), $7.35-7.47$ (m, 3H), 7.71 - $7.83(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, d_{6}-DMSO) $\delta 39.8,101.0,116.4,123.2,123.6,124.2,126.5$, 127.7, 127.9, 128.4, 128.6, 129.5, 133.3, 146.4, 147.0, 150.3. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$285.1274, found 285.1275
(S)-1-Cyclohexyl-3-phenyl-1H-inden-6-ol (6)

Compound 6. (90% yield, 97% ee). Pale yellow solid, 52.2 mg at 0.20 mmol scale. The ee of $\mathbf{6}$ was determined by HPLC analysis: (Chiralcel IB column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10$, $\left.254 \mathrm{~nm}, t_{\text {major }}=5.1 \mathrm{~min}(S), t_{\text {minor }}=5.5 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+33(c$ $0.40, \mathrm{CH}_{3} \mathrm{OH}$) for 97% ee $(S) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) δ $0.81-0.97(\mathrm{~m}, 1 \mathrm{H}), 1.02-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.98(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.38(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.39$ (m, 1H), $7.39-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, d_{6}-DMSO) $\delta 26.38,26.45,26.8,28.2,32.0,40.8,54.8,111.8,113.5,120.6$, 127.5, 127.8, 129.0, 131.6, 134.9, 136.2, 143.7, 149.8, 156.0. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 291.1743$, found 291.1745 .
(2S,4R)-2,4-Diphenylchromane (7)

Compound 7. (90\% yield, dr > 20:1, 99% ee). White solid, 51.4 mg at 0.20 mmol scale. The ee of 7 was determined by

HPLC analysis: (Chiralcel ID column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=98 / 2,210$ $\left.\mathrm{nm}, t_{\text {major }}=5.5 \mathrm{~min}(S), t_{\text {minor }}=5.9 \min (R)\right) ;[\alpha]^{20} \mathrm{D}-58\left(c 0.51, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 99% ee $(4 R) .{ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.29-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.53(\mathrm{~m}, 1 \mathrm{H}), 4.43$ (dd, $J=12.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.39(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.47(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.7,43.6$, $78.2,117.1,120.6,125.8,126.2,126.8,127.8,128.1,128.6,128.7,129.9,141.3$, 144.6, 155.6. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 287.1430$, found 287.1428 .
(S)-4-(4-Hydroxyphenyl)chroman-2-one ($\mathbf{8}$)

Compound 8. (95% yield, 91% ee). White solid, 45.6 mg at 0.20 mmol scale. The ee of $\mathbf{8}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,254$ $\left.\mathrm{nm}, t_{\text {major }}=8.4 \mathrm{~min}(S), t_{\text {minor }}=7.5 \mathrm{~min}(R)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+18(c 0.33$, $\mathrm{CH}_{3} \mathrm{OH}$) for 91% ee $(S) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.85-3.03$ $(\mathrm{m}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.97-$ $7.09(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 37.2, 39.8, 116.0, 117.1, 124.8, 126.1, 128.3, 128.66, 128.73, 132.0, 151.5, 155.3, 168.5. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 241.0859$, found 241.0865 .
(R)-4-Phenylchroman-7-ol (10)

Compound 10. (81% yield, 96% ee). Pale yellow solid, 36.6 mg at 0.20 mmol scale. The ee of $\mathbf{1 0}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90 / 10,210$ $\left.\mathrm{nm}, t_{\text {major }}=7.8 \mathrm{~min}(R), t_{\text {minor }}=7.6 \mathrm{~min}(S)\right) ;[\alpha]^{20} \mathrm{D}+22(c 0.14$, $\mathrm{CH}_{3} \mathrm{OH}$) for 96% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.03-2.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.24-2.42(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.27(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-$ $6.70(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.84(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.40(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.8,41.4,64.0,115.3,116.4,117.5,125.4,126.6,128.5$, 128.6, 145.4, 149.0, 149.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 227.1067$, found 227.1064 .

Compound 13. (95% yield, 99% ee). Pale yellow solid, 45.6 mg at 0.20 mmol scale. The ee of $\mathbf{1 3}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=80 / 20,210$ $\left.\mathrm{nm}, t_{\text {major }}=14.6 \mathrm{~min}(R), t_{\text {minor }}=16.5 \mathrm{~min}(S)\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+43(c 0.57$, $\mathrm{CH}_{3} \mathrm{OH}$) for 99% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.05-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.17-$ $3.29(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=10.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=10.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (dd, $J=10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.8,50.0$, 81.8, 127.4, 128.7, 128.9, 130.2, 130.5, 133.6, 143.0, 145.6, 174.2, 184.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 241.0859$, found 241.0865 . (9R,9aR)-9a-Methoxy-9-(2-oxo-2-phenylethyl)-9,9a-dihydro-3H-fluoren-3-one (15)

Compound 15. (93\% yield, $\mathrm{dr}=19: 1,96 \% \mathrm{ee})$. Pale yellow solid, 61.4 mg at 0.20 mmol scale. The ee of $\mathbf{1 5}$ was determined by HPLC analysis: (Chiralcel IF column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane $/$ isopropanol $=80 / 20,254 \mathrm{~nm}, t_{\text {major }}=7.3 \mathrm{~min}(R), t_{\text {minor }}=$ $8.8 \mathrm{~min}(S)) ;[\alpha]^{20}{ }_{\mathrm{D}}-69\left(c 0.29, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 96% ee $(9 R) .{ }^{1} \mathrm{H}$ NMR (500 MHz , d_{6}-DMSO) $\delta 2.67(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=13.9,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=9.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.42$ (m, 2H), $7.48(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, d_{6}-DMSO) $\delta 48.1,50.3,50.7,87.1,111.9,120.5,123.5,126.0,126.1,128.0,128.5$, 129.9, 132.2, 136.4, 141.4, 144.9, 149.2, 160.0, 186.8. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 353.1148$, found 353.1154.

Tolterodine ${ }^{[5]}$

(S)-Tolterodine. (97\% yield, >99\% ee). Colorless oil, 63.0 mg at 0.20 mmol scale. The ee of (\boldsymbol{S})-Tolterodine was determined by HPLC analysis: (Chiralcel IC column, 1.0 $\mathrm{mL} / \mathrm{min}$, hexane $/$ isopropanol $=99.5 / 0.5,210 \mathrm{~nm}, t_{\text {major }}=9.2$
$\min (S) ;[\alpha]^{20}{ }_{\mathrm{D}}-27(c 0.23, \mathrm{MeOH})$ for 99% ee. $\left[\right.$ lit. ${ }^{[5]}$ value for the S enantiomer: $\left.[\alpha]^{20}{ }^{\mathrm{D}}-27\left(c 1.0, \mathrm{CH}_{3} \mathrm{OH}\right).\right](\boldsymbol{R})$-Tolterodine. (86% yield, 99% ee). Colorless oil, 55.9 mg at 0.20 mmol scale. The ee of (\boldsymbol{R})-Tolterodine was determined by HPLC analysis: (Chiralcel IC column, $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=99.5 / 0.5,210 \mathrm{~nm}$, $t_{\text {major }}=9.9 \min (R), t_{\text {minor }}=9.4 \min (S) ;[\alpha]^{20} \mathrm{D}+25(c 0.11, \mathrm{MeOH})$ for 99% ee. $\left[\right.$ lit. ${ }^{[5]}$ value for the R enantiomer: $\left.[\alpha]^{20}{ }_{\mathrm{D}}+26\left(c 1.0, \mathrm{CH}_{3} \mathrm{OH}\right)\right] .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.10-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$, $2.37-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.34(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dd}, J=11.1,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.23-3.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 4 \mathrm{H})$.

9. References

[1] Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126.
[2] (a) Nishimura, T.; Noishiki, A.; Tsui, G. C.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 5056. (b) Okamoto, K.; Hayashi, T.; Rawal, V. H. Org. Lett. 2008, 10, 4387. (c) Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009, 4815.
[3] Hatano, M.; Nishimura, T. Angew. Chem. Int. Ed. 2015, 54, 10949; Angew.Chem. 2015, 127, 11099.
[4] (a) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (b) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503. (c) Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765.
[5] Daniela, B.; Airton, S.; Jason, T.; Carlos, C. Org. Lett. 2012, 14, 6036.

10.NMR Spectra

$$
\begin{aligned}
& -206.9127 \\
& \\
& \\
& \\
& -155.4881 \\
& \mathcal{L}_{146.2659}^{145.8836} \\
& \mathcal{L}^{137.7133} \\
& -135.0169 \\
& -128.2851 \\
& \\
& -117.7330 \\
& -115.0255 \\
& \mathcal{L}_{112.2223}
\end{aligned}
$$

$$
\begin{aligned}
& \text { V55.6751 } \\
& -49.0282 \\
& f^{44.2078} \\
& \hline \\
& -30.1132
\end{aligned}
$$


```
\ \
```


-207.0427

-206.6816

-48.6808
-43.6438
-30.0707

3d

-207.2647
-156.0914
-145.5401
$\int_{-135.1267}^{128867}$
-1287.8757
-126.3738
-115.5843

in \boldsymbol{d}_{6}-DMSO

-207.0168

-48.6538
-44.7860
-
-30.6002

in \boldsymbol{d}_{6}-DMSO

3k
in d_{6}-DMSO

-207.4451
-155.4402
-134.6675
-128.0642
-114.9699
-50.1989
-39.7234
-30.0632
-21.9602
-13.7771

3k
in d_{6}-DMSO

[^0]

-207.5324

d_{6}-DMSO

in \boldsymbol{d}_{6}-DMSO

-207.2659

d_{6}-DMSO

-207.1064

-48.7463
-45.9085
-30.6265

$\frac{\ddot{\square}}{\square}$	坔隹				

2
$\stackrel{\infty}{\infty}$
1

3q
d_{6}-DMSO

[^1]

OH 3 r
in \boldsymbol{d}_{6}-DMSO

4b
in d_{6}-DMso

[^2]

-170.2748
-155.6628
144.8324
139.2387
134.4042
-128.5206
128.2109
-127.9712
127.4896
126.6954
-175:06885

4c
in \boldsymbol{d}_{6}-DMSO

[^3]

-202.3504
-154.5440
-143.5770
$\int_{135.0541}^{128.9021}$
-128.7654
127.6307
126.6849
-115.6606

n
$\underset{\sim}{n}$
$\stackrel{\sim}{n}$
$\stackrel{\sim}{1}$

-210.6649

-49.0873
-436077
-40.9312
-33.0161
-25.3828

in \boldsymbol{d}_{6}-DMSO


```
miminminnm
```


-198.8132

彦

	\cdots	

in d_{6}^{6}-DMSO

in CDCl_{3}

210	200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	0

in CDCl_{3}

20
170
${ }_{\text {fl }}^{110} \begin{array}{r}10 \\ \text { (ppm) }\end{array}$

13
in CDCl_{3}

11.HPLC Charts

Peak Table Compound	Group Calibration Curve				
Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	7.659	11038992	718343	49.881	49.881
2	9.132	11091715	618238	50.119	50.119
Total		22130707	1336582	100.000	100.000

- <> Results View - Peak Table

Peak Table Compound	Group Calibration Curve				
Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	7.576	428398	28274	1.632	1.632
2	8.978	25825008	1444473	98.368	98.368
Total		26253406	1472747	100.000	100.000

- 〈〉 Results View - Peak Table

Peak Table Compound Group Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Areaß
1	15.684	13173779	352997	50.718	40.718
2	23.910	12800698	244281	49.282	49.282
Total		25974477	597278	100.000	

Peak Table Compound	Group ${ }^{\text {Calibration Curve }}$				
Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	15.895	21362	784	0.423	0.423
2	24.039	5032119	81857	99.577	99.577
Total		5053481	82641	100.000	100.000

- «> Results View - Peak Table

Peak Table Compound	Group ${ }^{\text {Calibration Curve }}$				
Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	8.791	6927301	351849	49.575	49.575
2	9.720	7046148	316632	50.425	50.425
Total		13973449	668481	100.000	100.000

- <> Results View - Peak Table

Peak Table Compound Group Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	7.300	54684	4625	1.343	1.343
2	8.175	4017989	286292	98.657	98.657
Total		4072672	290917	100.000	100.000

- 〈〉 Results View - Peak Table

Peak Table Compound \quad Group \quad Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Areax
1	6. 464	212219	20109	1.695	1.695
2	6.854	12308663	1029905	98.305	98.305
Total		12520883	1050014	100.000	100.000

-〈〉 Results View - Peak Table

3j

- 〈〉 Results View - Peak Table

Peak Table	Compound	Group	Calibration Curve

3k

- 〈〉 Results View - Peak Table

Peak Table Compound	Group ${ }^{\text {Calibration Curve }}$				
Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	6.258	6374668	456833	49.879	49.879
2	7.076	6405486	418662	50.121	50.121
Total		12780154	875495	100.000	100.000

－〈＞Results View－Peak Table

Peak Table Compound	Group ${ }^{\text {Calibration Curve }}$				
Peak\＃	Ret．Time	Area	Height	Conc．	Areas
1	7.327	4815040	236966	49.096	49.096
2	8.559	4992391	213799	50.904	50.904
Total		9807431	450765	100.000	100.000

－〈〉 Results View－Peak Table

Peak Table Compound	Group ${ }^{\text {Calibration Curve }}$				
Peak\＃	Ret．Time	Area	Height	Conc．	Areas
1	7.254	21499425	1103734	96.772	96.772
2	8.585	717050	21881	3.228	3.228
Total		22216475	1125615	100.000	100.000

ent-3f

- 〈〉 Results View - Peak Table

Peak Table Compound	Group	Calibration Curve				
Peak\#	Ret. Time		Area	Height	Conc.	Areas
1		6.114	6232970	566692	49.453	49.453
2		6. 767	6370763	510233	50.547	50.547
Total			12603733	1076925	100.000	100.000

- <> Results View - Peak Table

> -〈〉Results View - Peak Table	Peak Table Compound	Group	Calibration Curve

4a

- 〈〉 Results View - Peak Table

- <> Results View - Peak Table

Peak Table Compound	Group ${ }^{\text {Calibration Curve }}$				
Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	5.834	125200	13319	0.746	0.746
2	6.291	16660609	1474530	99.254	99.254
Total		16785809	1487849	100.000	100.000

Ph $\sim_{\sim}^{C O N H B n}$
4c

- 〈〉Results View - Peak Table

Peak Table Compound Group Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	8.319	19608930	1391462	97.625	97.625
2	9.449	476982	31465	2.375	2.375
Total		20085912	1422927	100.000	100.000

Peak Table	Compound	Group	Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Areaß
1	14.229	205264	7448	1.863	1.863
2	15.152	10815247	11020511	328268	335716

4h

Peak Table	Compound	Group	Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	9.972	10089368	636596	98.924	98.924
2	11.132	109703	5837	1.076	1.076
Total		10199071	642433	100.000	100.000

4j

- 〈〉 Results View - Peak Table

Peak Table Compound Group Calibration Curve

Peak ${ }^{\text {\# }}$	Ret. Time	Area	Height	Conc.	Areas
1	19.335	3885830	117661	49.960	49.960
2	23.813	3892012	94240	50.040	50.040
Total		7777842	211901	100.000	100.000

41

- <> Results View - Peak Table

4n

〈> Results View - Peak Table

Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	6.674	13586468	1070234	95.937	95.937
2	10.423	575436	31945	4.063	4.063
Total		14161903	1102179	100.000	100.000

5a

- 〈〉Results View - Peak Table

| Peak Table Compound | Group | Calibration Curve |
| :--- | :--- | :--- | :--- |

Peak\#	Ret. Time	Area	Height	Conc.	Areas
${ }^{1}$	4.076	27255	4754	0.311	0.311
2	4.391	8748772	1443315	99.689	99.689
Total		8776026	1448070	100.000	100.000

5b

〈> Results View - Peak Table

Peak Table Compound Group | Calibration Curve |
| :--- |

Peak\#	Ret. Time	Area	Height	Conc.	AreaX
1	4.865	1184867	179695	49.775	49.775
2	5.168	1195595	173671	50.225	50.225
Total		2380462	353366	100.000	100.000

6

- 〈〉 Results View - Peak Table

Peak Table	Compound	Group	Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	5. 121	3695829	432045	98.678	98.678
2	5.538	49529	5516	1.322	1.322
Total		3745358	437561	100.000	100.000

8

13

- 〈〉 Results View - Peak Table

Peak Table	Compound	Group	Calibration Curve

Peak\#	Ret. Time	Area	Height	Conc.	Areas
1	14.883	1683508	75837	50.127	50.127
2	16. 456	1674944	69592	49.873	49.873
Total		3358452	145429	100.000	100.000

15

Peak Table Compound Group Calibration Curve

Peak ${ }^{\text {F }}$	Ret. Time	Area	Height	Conc.	Area\%
1	7.251	2498875	225044	92.836	92.836
2	7.574	135531	12825	5.035	5.035
3	8.813	53307	4239	1.980	1.980
4	11.399	3994	192	0.148	0.148
Total		2691707	242300	100.000	100.000

(S)-Tolterodine

(R)-Tolterodine

[^0]:

[^1]:

[^2]:

[^3]: 30
 200
 $180 \quad 170$
 140 $\mathrm{m}_{\mathrm{fl}}^{110} \begin{array}{r}10 \\ (\mathrm{pm})\end{array}$

