Risk and Life Cycle Assessment of Nanoparticles for Medical Applications Prepared Using Safe- and Benign-by-Design Gas-Phase Syntheses

P. Weyell<sup>a</sup>, H.-D. Kurland<sup>b</sup>, T. Hülser<sup>c</sup>, J. Grabow<sup>b</sup>, F. A. Müller<sup>b</sup> and D. Kralisch<sup>a</sup>\*

- a Friedrich Schiller University Jena, Pharmaceutical Technology and Biopharmacy, Lessingstraße 8, 07743 Jena, Germany. \*Email: dana.kralisch@uni-jena.de; Fax: +49 3641 949942; Phone: +49 3641 949951
- b Friedrich Schiller University Jena, Otto Schott Institute of Materials Research (OSIM), Löbdergraben 32, 07743 Jena, Germany.
- c Institute of Energy and Environmental Technology e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany.

| Nevenetiales  | XRF-An                         | alysis |
|---------------|--------------------------------|--------|
| Nanoparticles | Compound/Element               | Mass%  |
|               | SiO <sub>2</sub>               | 63.30  |
|               | Fe <sub>2</sub> O <sub>3</sub> | 36.29  |
|               | К                              | 0.28   |
| SiliFe        | Mn                             | 0.06   |
| Sille         | S                              | 0.06   |
|               | Ni                             | 0.01   |
|               | Zn                             | 85 ppm |
|               | S                              | 0.02   |
|               | Fe <sub>2</sub> O <sub>3</sub> | 99.69  |
|               | Mn                             | 0.18   |
|               | S                              | 0.05   |
| γ-Fe₂O₃       | Ni                             | 0.02   |
|               | Zn                             | 0.03   |
|               | Si                             | 0.03   |

Table 1: Results of XRF-Analysis of the (Co)LAVA nanopowders.

| Ecoinvent v3.2 datasets                                              | Ecoinvent v3.2 datasets Input |                                          |                          | Output                                    |
|----------------------------------------------------------------------|-------------------------------|------------------------------------------|--------------------------|-------------------------------------------|
| Transpo                                                              | rt and logistic               |                                          |                          |                                           |
| Market for petrol, unleaded<br>[RER]                                 | Petrol                        | 2.13 gª                                  | 1 unit <sup>b</sup>      | Pharma<br>manufacturing<br>(1 kg product) |
| Maintenance, lorry 28 metric ton [CH]                                | Maintenance<br>lorry          | 7.69·10 <sup>-7</sup> unit <sup>c</sup>  | E                        | missions                                  |
| Market for lorry, 28 metric ton [GLO]                                | Lorry                         | 7.69·10 <sup>-7</sup> unit <sup>c</sup>  | 0.98 kg                  | Carbon dioxide                            |
| Pa                                                                   | ckaging                       |                                          | 9.95·10⁻⁴ kg             | Nitrogen oxides                           |
| Offset printing, per kg printed paper [CH]                           | Paper                         | 0.33 kg <sup>d</sup>                     | 1.87·10 <sup>-4</sup> kg | Sulfur dioxide                            |
| Market for packaging glass,<br>white [GLO]                           | Packaging glass,<br>white     | 0.36 kg <sup>d</sup>                     |                          |                                           |
| Carton board box production<br>service, with offset printing<br>[CH] | Carton box                    | 0.33 kg <sup>d</sup>                     |                          |                                           |
| Ste                                                                  | rilisation                    |                                          |                          |                                           |
| Market for water, deionised,<br>from tap water, at user [GLO]        | Water                         | 1.16·10 <sup>-3</sup> kg <sup>e</sup>    |                          |                                           |
| Market for steel,<br>chromiumsteel 18/8 [GLO]                        | Steel                         | 1.12·10 <sup>-6</sup> kg <sup>e</sup>    |                          |                                           |
| Pharmaceutical facto                                                 | ry, construction of           | facilities                               |                          |                                           |
| Chemical factory construction, organics [RER]                        | Pharmaceutical<br>factory     | 5.49·10 <sup>-10</sup> unit <sup>f</sup> |                          |                                           |
| Energy consumption                                                   |                               |                                          |                          |                                           |
| Natural gas production [DE]                                          | Natural gas                   | 0.21 m³                                  |                          |                                           |
| Market for light fuel oil<br>[Europe without Switzerland]            | Fuel oil                      | 6.25 g                                   |                          |                                           |
| Market for electricity,<br>medium voltage [DE]                       | Electricity                   | 1.66 kWh                                 |                          |                                           |

Table 2: Life Cycle Inventory – Pharmaceutical manufacturing

<sup>a</sup> 27.7 L petrol / 100 km, average density 0.75 kg/L, 14 lorries, 13341 km per lorry per year <sup>1</sup>

<sup>b</sup> 1 unit = 18200 t product per year

<sup>e</sup> Sterilisation of 2618 t product per year, 15 L water / 540 kg product, autoclave 700 kg / life time 10 years

<sup>f</sup> 1 unit = 1 factory with life time of 100 years

c 14 units<sup>2</sup>

<sup>&</sup>lt;sup>d</sup> Representative data for primary and secondary packaging material, e.g. filling of Gadovist<sup>®</sup> in vials, printed patient information's, product transport in carton boxes.

<sup>&</sup>lt;sup>1</sup> KBA (the Federal Bureau of Motor Vehicles and Drivers), 2016.

<sup>&</sup>lt;sup>2</sup> https://www.lichteindruck.de/projekte/teva-ratiopharm/ (accessed 16<sup>th</sup> October 2017)

 Table 3: Pedigree data quality matrix<sup>3</sup>.

|   | Indicator score                         | 1                                                                                                                                     | 2                                                                                           | 3                                                                                            | 4                                                                                                                                                                 | 5                                                                                                                          |
|---|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| A | Reliability of the source               | Verified data<br>based on<br>measurements                                                                                             | Verified data<br>partly<br>assumptions or<br>non-verified<br>data based on<br>measurements  | Non-verified<br>data partly<br>based on<br>assumptions                                       | Qualified<br>expert<br>estimation                                                                                                                                 | Non-qualified<br>estimate or<br>unknown origin                                                                             |
| в | Completeness                            | Representative<br>data from a<br>sufficient<br>sample of sites<br>over an<br>adequate<br>period to even<br>out normal<br>fluctuations | Representative<br>data from a<br>smaller number<br>of sites but for<br>adequate<br>periods  | Representative<br>data from an<br>adequate<br>number of sites<br>but from<br>shorter periods | Representative<br>data from a<br>smaller number<br>of sites and<br>shorter periods<br>or incomplete<br>data from an<br>adequate<br>number of sites<br>and periods | Representativeness<br>unknown or<br>incomplete data<br>from a smaller<br>number of sites<br>and/or from shorter<br>periods |
| с | Temporal correlation                    | Less than 3<br>years of<br>difference to<br>year of study                                                                             | Less than 6<br>years of<br>difference                                                       | Less than 10<br>years of<br>difference                                                       | Less than 15<br>years of<br>difference                                                                                                                            | Age of data<br>unknown or more<br>than 15 years of<br>difference                                                           |
| D | Geographical<br>correlation             | Data from area<br>under study                                                                                                         | Average data<br>from larger<br>area in which<br>the area under<br>study is<br>included      | Data from area<br>with similar<br>production<br>conditions                                   | Data from area<br>with slightly<br>similar<br>production<br>conditions                                                                                            | Data from unknown<br>area or area with<br>different production<br>conditions                                               |
| E | Further<br>technological<br>correlation | Data from<br>enterprises,<br>processes and<br>materials<br>under study                                                                | Data from<br>processes and<br>materials under<br>study but from<br>different<br>enterprises | Data from<br>processes and<br>materials under<br>study but from<br>different<br>technology   | Data on related<br>processes or<br>materials but<br>from same<br>technology                                                                                       | Unknown<br>technology or data<br>on related processes<br>or materials, but<br>from different<br>technology                 |

<sup>&</sup>lt;sup>3</sup> B. P. Weidema, *The International Journal of Life Cycle Assessment*, 1998, 3, 259-265.

**Table 4:** Data quality assessment for LCI models on manufacturing of SiliFe- and  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> by laservaporisation in (Co)LAVA-process, flame spray pyrolysis (FSP) and synthesis of reference Gadovist<sup>®</sup> (Gd).

| Data sets from Ecoinvent data base v 3.2;   |          |   |   |   |   |   |
|---------------------------------------------|----------|---|---|---|---|---|
| allocation cut-off (results)                |          |   |   |   |   |   |
| [CH] = Swiss, [DE] = German,                | Model    | Α | В | С | D | E |
| [RER] = European, [GLOB] = global           |          |   |   |   |   |   |
| Anionic resin production [CH]               | Gd       | 3 | 4 | 5 | 3 | 1 |
| Argon production, liquid [RER]              | (Co)LAVA | 3 | 4 | 1 | 5 | 1 |
| Cationic resin production [CH]              | Gd       | 3 | 4 |   | 3 | 1 |
| · · · ·                                     |          | 3 |   | 5 | 3 |   |
| Carbon dioxide production, liquid [RER]     | (Co)LAVA | 3 | 2 | 5 | 3 | 2 |
| Carton board box production service, with   | FSP      |   |   |   |   |   |
| offset printing [CH]                        | (Co)LAVA | 2 | 2 | 1 | 3 | 4 |
|                                             | Gd       |   |   |   |   |   |
| Chloroacetic acid production [RER]          | Gd       | 3 | 2 | 1 | 2 | 1 |
| Compressed air production, 800 kPa gauge,   | FSP      | _ |   |   | - | - |
| <30kW, average generation [RER]             | (Co)LAVA | 3 | 5 | 1 | 2 | 3 |
|                                             | FSP      | _ |   |   | _ |   |
| Chromium steel pipe production [GLO]        | (Co)LAVA | 5 | 4 | 1 | 2 | 2 |
| Dichloromethane production [RER]            | Gd       | 1 | 2 | 1 | 2 | 2 |
| Diethyl ether production [GLO]              | Gd       | 2 | 4 | 1 | 2 | 2 |
| N,N-dimethylformamide production [RER]      | Gd       | 2 | 4 | 1 | 2 | 1 |
| Electricity, high voltage, production mix   |          | 2 |   | - | 2 | - |
| [DE]                                        | (Co)LAVA | 5 | 5 | 1 | 1 | 5 |
| Ethyl acetate production [RER]              | Gd       | 1 | 4 | 1 | 2 | 1 |
| Glass tube production, borosilicate [DE]    | (Co)LAVA | 2 | 2 | 1 | 1 | 4 |
| Heat pump production, 30kW [RER]            | (Co)LAVA | 4 | 4 | 1 | 2 | 4 |
| Isopropanol production [RER]                | FSP      | 3 | 4 | 1 | 2 | 1 |
|                                             | FSP      |   |   |   |   |   |
| Maintenance lorry 28 metric ton [CH]        | LAVA     | 4 | 4 | 1 | 3 | 2 |
| ,                                           | Gd       |   |   |   |   |   |
| Market for acetone [GLO]                    | Gd       | 2 | 2 | 1 | 1 | 1 |
| Market for acetonitrile [GLO]               | Gd       | 2 | 2 | 1 | 2 | 2 |
| Market for acetylene [GLO]                  | Gd       | 3 | 5 | 1 | 3 | 5 |
| Market for benzaldehyde [GLO]               | Gd       | 3 | 3 | 4 | 1 | 1 |
| Market for chlorine, liquid [GLO]           | (Co)LAVA | 1 | 4 | 1 | 2 | 2 |
| Market for chlorosulfonic acid [GLO]        | Gd       | 2 | 2 | 4 | 2 | 4 |
| Market for copper [GLO]                     | Gd       | 2 | 4 | 3 | 2 | 2 |
| Market for dichloromethane [GLO]            | Gd       | 3 | 4 |   | 2 | 2 |
| Market for diethanolamine [GLO]             |          | 3 |   | 5 |   |   |
|                                             | Gd       |   | 2 | 5 | 5 | 2 |
| Market for dioxane [GLO]                    | Gd       | 3 | 2 | 4 | 2 | 2 |
|                                             | FSP      |   |   | 2 |   | _ |
| Market for electricity, medium voltage [DE] | (Co)LAVA | 1 | 1 | 3 | 1 | 5 |
|                                             | Gd       |   |   |   |   |   |
| Market for ethanol, without water, in 99.7% |          |   |   |   |   |   |
| solution state, from fermentation, at       | Gd       | 3 | 3 | 1 | 3 | 1 |
| service station [CH]                        |          |   |   |   |   |   |
| Market for ethylenediamine [GLO]            | Gd       | 3 | 4 | 5 | 2 | 1 |
| Market for ethylene carbonate [GLO]         | Gd       | 2 | 3 | 1 | 2 | 2 |
| Market for formaldehyde [GLO]               | Gd       | 1 | 4 | 1 | 2 | 1 |
| Market for helium [GLO]                     | (Co)LAVA | 2 | 4 | 1 | 2 | 1 |
| Market for hydrochloric acid, without       | Gd       | 2 | 2 | 1 | 2 | 2 |
| water, in 30% solution state [RER]          |          |   |   |   |   |   |
| Market for hydrogen, liquid [RER]           | Gd       | 5 | 3 | 1 | 2 | 5 |

### (Table 4 continued)

| Market for hydrogen peroxide, without water, in 50% solution state [GLO]        | Gd                    | 1 | 3 | 1 | 2 | 1 |
|---------------------------------------------------------------------------------|-----------------------|---|---|---|---|---|
| Market for iron (III) chloride, without water,                                  | Gd                    | 3 | 3 | 1 | 3 | 1 |
| in 40% solution state [GLO]                                                     |                       |   |   |   |   |   |
| Market for iron scrap, sorted, pressed [GLO]                                    | (Co)LAVA              | 3 | 4 | 1 | 2 | 2 |
| Market for lead concentrate [GLO]                                               | Gd                    | 2 | 3 | 1 | 2 | 1 |
| Market for light fuel oil [Europe without<br>Switzerland]                       | FSP<br>(Co)LAVA<br>Gd | 1 | 1 | 1 | 2 | 1 |
| Market for lorry, 28 metric ton [GLO]                                           | FSP<br>(Co)LAVA<br>Gd | 5 | 5 | 1 | 2 | 5 |
| Market for magnesium sulfate [GLO]                                              | Gd                    | 3 | 5 | 1 | 2 | 4 |
| Market for methane, 96% by volume [GLO]                                         | FSP                   | 3 | 4 | 1 | 2 | 2 |
| Market for N,N-dimethylformamide [GLO]                                          | Gd                    | 3 | 5 | 1 | 2 | 1 |
| Market for nitrogen, liquid [RER]                                               | FSP<br>(Co)LAVA       | 1 | 1 | 1 | 2 | 1 |
| Market for oxygen, liquid [RER]                                                 | FSP                   | 3 | 1 | 1 | 2 | 5 |
| Market for petrol, unleaded [RER]                                               | FSP<br>(Co)LAVA<br>Gd | 1 | 2 | 1 | 2 | 5 |
| Market for pig iron [GLO]                                                       | FSP                   | 4 | 5 | 1 | 2 | 1 |
| Market for pyridine [GLO]                                                       | Gd                    | 1 | 2 | 4 | 2 | 1 |
| Market for samarium europium gadolinium concentrate, 94% rare earth oxide [GLO] | Gd                    | 1 | 1 | 1 | 1 | 1 |
| Market for selenium [GLO]                                                       | (Co)LAVA              | 3 | 1 | 1 | 5 | 1 |
| Market for sodium hydroxide, without water, in 50% solution state [GLO]         | (Co)LAVA<br>Gd        | 1 | 1 | 1 | 2 | 2 |
| Market for steel, chromium steel 18/8<br>[GLO]                                  | FSP<br>(Co)LAVA       | 4 | 5 | 1 | 2 | 5 |
| Market for sulfur [GLO]                                                         | Gd                    | 3 | 2 | 1 | 2 | 1 |
| Market for sulfuric acid [GLO]                                                  | Gd                    | 2 | 1 | 5 | 2 | 1 |
| Market for transport, freight, lorry 16-32<br>metric ton, EURO4 [GLO]           | FSP<br>(Co)LAVA<br>Gd | 3 | 2 | 1 | 3 | 1 |
| Market for water, deionized, from tap water, at user [CH]                       | FSP<br>(Co)LAVA<br>Gd | 2 | 3 | 1 | 3 | 1 |
| Market for zinc oxide [GLO]                                                     | (Co)LAVA              | 3 | 1 | 4 | 5 | 1 |
| Market for zinc sulfide [GLO]                                                   | (Co)LAVA              | 3 | 1 | 4 | 5 | 1 |
| Methanol production, from synthetic gas<br>[CH]                                 | Gd                    | 1 | 4 | 1 | 3 | 3 |
| Municipal waste incineration facility<br>construction [CH]                      | FSP                   | 2 | 4 | 1 | 3 | 3 |
| Natural gas production [DE]                                                     | FSP<br>(Co)LAVA<br>Gd | 1 | 3 | 5 | 1 | 1 |
| Nitric acid production, product in 50% solution state [RER]                     | FSP<br>Gd             | 1 | 1 | 5 | 2 | 1 |
| Offset printing, per kg printed paper [CH]                                      | FSP<br>LAVA<br>Gd     | 1 | 2 | 1 | 3 | 3 |

### (Table 4 continued)

| Market for packaging glass production,       | FSP      |   | _ |   |   |   |
|----------------------------------------------|----------|---|---|---|---|---|
| white [GLO]                                  | LAVA     | 2 | 5 | 1 | 1 | 4 |
|                                              | Gd       |   |   |   |   |   |
| Market for palladium [GLO]                   | Gd       | 1 | 2 | 1 | 3 | 3 |
| Market for zinc concentrate [GLO]            | Gd       | 1 | 3 | 1 | 3 | 2 |
| Pig iron production [GLO]                    | FSP      | 3 | 1 | 1 | 2 | 1 |
| Potassium hydroxide production [RER]         | Gd       | 1 | 5 | 1 | 3 | 2 |
| Process-specific burdens, hazardous waste    | 560      |   | 2 | 1 | 2 | 2 |
| incineration plant [CH]                      | FSP      | 1 | 3 | 1 | 3 | 2 |
| Silicon carbide production [RER]             | FSP      | 2 | 3 | 1 | 2 | 3 |
|                                              | (Co)LAVA |   |   |   |   |   |
| Silica sand production [DE]                  | Gd       | 2 | 4 | 1 | 1 | 3 |
| Sodium ethoxide production [RER]             | Gd       | 1 | 4 | 4 | 2 | 1 |
|                                              | FSP      |   |   |   |   | _ |
| Steam production in chemical industry        | (Co)LAVA | 1 | 1 | 1 | 2 | 2 |
| [RER]                                        | Gd       | - | - | - | 2 | 2 |
| Sulfuric acid production [RER]               | Gd       | 1 | 4 | 5 | 2 | 2 |
| Toluene production, liquid [RER]             | Gd       | 1 | 1 | 1 | 2 | 1 |
|                                              | Gu       |   | 1 |   | 2 | 1 |
| Treatment of hazardous waste, hazardous      | Gd       | 1 | 2 | 1 | 3 | 1 |
| waste incineration [CH]                      |          | 2 |   | - | 2 |   |
| Trimethylamine production [RER]              | Gd       | 3 | 4 | 5 | 2 | 4 |
| Ventilation system production,               | FSP      | _ | _ |   |   |   |
| decentralized, 6 x 120 m3/h, steel ducts     | (Co)LAVA | 3 | 3 | 1 | 3 | 3 |
| [CH]                                         |          |   |   |   |   |   |
| Water production, deionized, from tap        | FSP      |   |   |   |   |   |
| water, at user [CH]                          | (Co)LAVA | 2 | 3 | 1 | 3 | 1 |
|                                              | Gd       |   |   |   |   |   |
| User defined data sets                       |          |   |   |   |   |   |
|                                              | FSP      |   |   |   |   |   |
| Autoclave in pharmaceutical manufacturing    | (Co)LAVA | 1 | 4 | 2 | 1 | 1 |
|                                              | Gd       |   |   |   |   |   |
|                                              | FSP      |   |   |   |   |   |
| Chemical manufacturing                       | (Co)LAVA | 1 | 2 | 1 | 1 | 3 |
| -                                            | Gd       |   |   |   |   |   |
| FSP                                          | FSP      | 2 | 2 | 1 | 1 | 1 |
| Hematite production                          | (Co)LAVA | 3 | 4 | 5 | 1 | 3 |
| Laser construction                           | (Co)LAVA | 3 | 4 | 5 | 3 | 4 |
| (Co)LAVA-process                             | (Co)LAVA | 2 | 4 | 1 | 1 | 1 |
| Production of iron (III)-nitrate             | FSP      | 3 | 5 | 3 | 5 | 5 |
|                                              | FSP      |   |   |   |   |   |
| Pharmaceutical manufacturing                 | (Co)LAVA | 1 | 2 | 2 | 1 | 4 |
| rnannaceulicai manulaciuling                 | Gd       | T | 2 | 2 | Ţ | 4 |
| Synthesis of evolop as starting material for | Gu       |   |   |   |   |   |
| Synthesis of cyclen as starting material for | Gd       | 1 | 4 | 5 | 5 | 1 |
| gadubutrol synthesis                         |          |   |   | - | _ |   |
| Synthesis of gadubutrol                      | Gd       | 1 | 4 | 2 | 5 | 1 |

| Modelling                                   | Comments & Assumptions                                                                                                                                                                                                                                      | References                                                                                                                                                                                         |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical manufacturing                      | Comments & Assumptions         Data set considered for modelling of chemical manufacturing for all synthesis steps         German energy mix         Chemical factory with a life time of 100 years, production rate of 1 675 800 t per year         Input: | Umwelterklärung 2017 – Chemiepark<br>Gendorf.                                                                                                                                                      |
|                                             | Energy mix (natural gas, light fuel oil,<br>heat by steam production, electricity)<br>Output:<br>Emissions to air (carbon dioxide,<br>sulfur dioxide, nitrogen oxide),<br>waste water pollutants (ammonium,<br>chloride, nitrogen, sulfate)                 |                                                                                                                                                                                                    |
| Synthesis of gadobutrol<br>(Gadovist®)      |                                                                                                                                                                                                                                                             | J. Platzek et al., <i>Inorganic</i><br><i>Chemistry</i> , 1997, <b>36</b> , p. 6086                                                                                                                |
| Synthesis of cyclen                         | Starting material in the synthesis of<br>gadobutrol. Synthesis starts with<br>tosylation of diethanolamine and<br>diethylenetriamine followed by<br>cyclisation.                                                                                            | T. J. Atkins et al., <i>Organic Syntheses</i> , 1978, <b>58</b> , p.86                                                                                                                             |
| Tosylation                                  | Stoichiometric calculation. Reaction with para-toluene sulfonyl chloride.                                                                                                                                                                                   | Organikum, 23. Edition, Wiley VCH<br>Verlag GmbH, Weinheim 2009, p. 664.                                                                                                                           |
| Synthesis of para-toluene sulfonyl chloride | Reaction of toluene with<br>chlorosulfuric acid (molar ratio 1 : 3)<br>at room temperature.                                                                                                                                                                 | Organikum, 23. Edition, Wiley VCH<br>Verlag GmbH, Weinheim 2009, p. 369.                                                                                                                           |
| Synthesis of MOCO*                          | Starting material in the synthesis of<br>gadobutrol. Reaction of acetylene<br>and formaldehyde to 2-butyn-1.4-<br>diol of formaldehyde by use of a<br>composite catalyst based on bismuth<br>(III) oxide and copper (II) oxide. <i>Cis</i> -2-              | <ul> <li>P. Pässler et al., Acetylene. Ullmann's<br/>Encyclopedia of Industrial Chemistry,<br/>2008.</li> <li>Organikum, 23. Edition, Wiley VCH<br/>Verlag GmbH, Weinheim 2009, p. 476.</li> </ul> |
|                                             | butene-1.4-diol is formed in<br>hydrogenation by use of palladium as<br>catalyst. A cyclic acetal is formed in<br>reaction with acetone. Then, the $\pi$ -<br>bound is epoxidised in the presence<br>of meta-chloroperbenzoic acid.                         | N. Prileschajew, <i>Berichte der deutschen chemischen Gesellschaft,</i> 1909, <b>42</b> , p. 4811.                                                                                                 |

## (Table 5 continued)

| Synthesis of <i>cis</i> -2-butene-<br>1.4-diol                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>P. Pässler et al., Acetylene, Ullmann's<br/>Encyclopedia of Industrial Chemistry,<br/>2008.</li> <li>W. Reppe et al., European Journal of<br/>Organic Chemistry, 1955, 596, p. 6</li> <li>H. Gräfje et al., Butanediols,<br/>Butenediol, and Butynediol, Ullmann's<br/>Encyclopedia of Industrial Chemistry,<br/>2000.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Composite catalyst of<br>bismuth (III) oxide and<br>copper (II) oxide | The production of 2-butyn-1.4-diol<br>can be carried out continuously in a<br>reactor cascade (3-5 reactor<br>systems). The catalyst is<br>implemented in a fixed bed of coated<br>strains (diameter 4 mm, length 10<br>mm, volume 125.7 mm <sup>3</sup> per strain). 3<br>strains were assumed in each of five<br>reactor systems with an overall<br>volume of 1885.5 mm <sup>3</sup> . Bismuth (III)<br>oxide and copper (II) oxide will<br>obtained by reaction of the<br>respective metal nitrates<br>(stoichiometric calculation). A<br>dataset of the resource extraction of<br>copper is integrated in Ecoinvent<br>database v3.2. Bismuth is a<br>byproduct in, e.g. lead extraction. An<br>average value of 1000 g Bi / t Pb was<br>considered. | <ul> <li>H. Gräfje et al., <i>Butanediols,</i><br/><i>Butenediol, and Butynediol,</i> Ullmann's<br/>Encyclopedia of Industrial Chemistry,<br/>2000.</li> <li>W. Reppe et al., <i>European Journal of</i><br/><i>Organic Chemistry</i>, 1955, <b>596</b>, p. 6</li> <li>H. W. Richardson, <i>Copper Compounds</i>,<br/>Ullmann's Encyclopedia of Industrial<br/>Chemistry, 2000.</li> <li>A. F. Holleman, E. Wiberg, N. Wiberg,<br/><i>Lehrbuch der Anorganischen Chemie</i>,<br/>102. Auflage. Walter de Gruyter &amp; Co,<br/>Berlin 2007, p. 827.</li> <li>J. Krüger et al., <i>Bismuth, Bismuth</i><br/><i>Alloys, and Bismuth Compounds</i>,<br/>Ullmann's Encyclopedia of Industrial<br/>Chemistry, 2003.</li> </ul> |
| Palladium catalyst                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Palladium catalyst, US 5063194 A.<br>BASF, 1991.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Synthesis of meta-chloro-<br>peroxybenzoic acid                       | Benzoyl chloride is formed in<br>chlorination of benzaldehyde.<br>Further functionalization to meta-<br>chlorobenzoyl chloride in Friedel-<br>Crafts reaction. meta-<br>chloroperbenzoic acid is formed in<br>reaction with hydrogen peroxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wöhler and Liebig, Annalen der<br>Pharmacie, 1832, <b>3</b> , p. 249.<br>EP0001252 A1. Europäische<br>Patentschrift, 1979.<br>Organic Syntheses, 1988, <b>6</b> , p.276;<br>Organic Syntheses, 1970, <b>50</b> , p.15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

\*4,4-dimethyl-3.5.8-trioxabicyclo[5.1.0]octane

## **Occupational safety assessment – Stoffenmanager Nano**

#### Hazard characterisation of SiliFe nanoparticles

Material characterisation: Superparamagnetic SiliFe composite nanoparticles are characterised by a maghemite inclusion in a spherical matrix of amorphous silicon dioxide. The surface chemistry and interaction of the nanoparticles are similar to amorphous silicon dioxide nanoparticles as long as the silica matrix is closed.

Assessment Approach: Evaluation of hazard data of silica nanoparticles as analogous material.

Hazard data: OECD Safety Data Sheet on silica nanoparticles<sup>4</sup>. Amorphous silicon dioxide nanoparticles NM 200 - NM 204 in OECD testing program.

 Table 6: Toxicity evaluation of silica nanoparticles.

|                                  | NM 200                           | NM 201                           | NM 202                        | NM 203                        | NM 204                                   | Methods                      | Hazard group<br>allocation | Limits by<br>ISO TG 12901-2    |
|----------------------------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|------------------------------------------|------------------------------|----------------------------|--------------------------------|
| Acute toxicity<br>- inhalation - | No signs of toxicity             | No signs of toxicity             | No signs of toxicity          | No signs of toxicity          | -                                        | OECD TG<br>403               | А                          | > 5 mg/L                       |
| Acute toxicity<br>- oral -       | LD50 (rat)<br>> 2000 mg/kg bw    | LD50 (rat)<br>> 2000 mg/kg bw    | LD50 (rat)<br>> 3300 mg/kg bw | LD50 (rat)<br>> 3300 mg/kg bw | LD50 (rat)<br>> 2000 mg/kg bw            | OECD TG<br>401               | А                          | > 2000 mg/kg bw                |
| Acute toxicity<br>- dermal -     | LD50 (rabbit)<br>> 5000 mg/kg bw | LD50 (rabbit)<br>> 5000 mg/kg bw | -                             | -                             | LD50 (rabbit)<br>> 5000 mg/kg bw         | Draize Test                  | А                          | > 2000 mg/kg bw                |
| Skin irritation                  | No signs of<br>irritation        | No signs of<br>irritation        | No signs of<br>irritation     | No signs of<br>irritation     | No signs of<br>irritation                | OECD TG<br>404               | А                          | No or low signs of<br>toxicity |
| Eye irritation                   | No signs of<br>irritation        | No signs of<br>irritation        | No signs of<br>irritation     | No signs of<br>irritation     | Weakly irritation, reversible after 72 h | Draize Test                  | А                          | No or low signs of<br>toxicity |
| Mutagenicity                     | No signs of toxicity             | No signs of toxicity             | No signs of toxicity          | No signs of toxicity          | -                                        | OECD TG<br>471, 473, 474,476 | А                          | No signs of toxicity           |
| Cancerogenity                    |                                  |                                  | Negative*                     |                               |                                          | OECD TG 453                  |                            | No signs of toxicity           |
| Reproductive<br>toxicity         | No signs of toxicity             | -                                | No signs of toxicity          | No signs of toxicity          | -                                        | OECD TG<br>415, 416          | А                          | No signs of toxicity           |

bw body weight

\* Based on data of bulk substance

<sup>&</sup>lt;sup>4</sup> SILICON DIOXIDE: SUMMARY OF THE DOSSIER Series on the Safety of Manufactured Nanomaterials No. 71, ENV/JM/MONO(2016)23, Organisation for Economic Cooperation and Development OECD, 2016.

## Occupational safety assessment – Stoffenmanager Nano 1.0

**Table 7:** Description of the employees working conditions in Scenario A – D for evaluation of exposure score in occupational safety assessment using Stoffenmanager Nano.

|                                                                                                   | Scenario A                                                | Scenario B                                                                                                                                                                                           | Scenario C                                                                                                                                                                        | Scenario D                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                   | Continuous manufacturing of nanoparticles in LAVA or FSP. | Maintenance of process plant once a<br>year (e.g. exchange of filter system)<br>without use / with personal protective<br>equipment (filter mask FPP2 or full-<br>face powered air respirator TMP3). | Filling and packaging of the<br>nanoparticles as sterile<br>pharmaceutical product, change in<br>potential exposure risk due to<br>separate filling system (e.g. a glove<br>box). | Transport and storage of the packaged final pharmaceutical product.                                                                                             |
| Source domain                                                                                     | Release of primary particles during actual synthesis      | Handling of bulk<br>aggregated/agglomerated<br>nanopowders                                                                                                                                           | Spraying or dispersion of a ready-to-<br>use nanoproduct                                                                                                                          | Spraying or dispersion of a ready-<br>to-use nanoproduct                                                                                                        |
| Product type                                                                                      |                                                           |                                                                                                                                                                                                      | Intermediate                                                                                                                                                                      | Ready-to-use nanoproduct                                                                                                                                        |
| Product appearance                                                                                | Powder                                                    | Powder                                                                                                                                                                                               | Liquid suspension                                                                                                                                                                 | Liquid suspension                                                                                                                                               |
| Dustiness                                                                                         | High                                                      | High                                                                                                                                                                                                 | -                                                                                                                                                                                 | -                                                                                                                                                               |
| Moisture content                                                                                  | Dry product                                               | Dry product                                                                                                                                                                                          | -                                                                                                                                                                                 | -                                                                                                                                                               |
| Viscosity of the liquid                                                                           | -                                                         | -                                                                                                                                                                                                    | Low (like water)                                                                                                                                                                  | Low (like water)                                                                                                                                                |
| Mass concentration in the product                                                                 | 100%                                                      | 100%                                                                                                                                                                                                 | 2.5% <sup>d</sup>                                                                                                                                                                 | 2.5% <sup>d</sup>                                                                                                                                               |
| Does the product contain fibers?                                                                  | No                                                        | No                                                                                                                                                                                                   | No                                                                                                                                                                                | No                                                                                                                                                              |
| Inhalation hazard                                                                                 | Non hazardous                                             | Non hazardous                                                                                                                                                                                        | Non hazardous                                                                                                                                                                     | Non hazardous                                                                                                                                                   |
| Characterize your task                                                                            | Flame pyrolysis <sup>a</sup>                              | Handling of products in small amounts<br>(up to 100 g)                                                                                                                                               | Handling of liquids using low pressure,<br>low speed with large or medium<br>quantities                                                                                           | Handling of (almost) undisturbed<br>liquids (very low speed) very low<br>quantities (under controlled<br>conditions) of liquids in tightly<br>closed containers |
| Duration task                                                                                     | 4 to 8 hours a day <sup>b</sup>                           | 2 to 4 hours                                                                                                                                                                                         | 4 to 8 hours                                                                                                                                                                      | 4 to 8 hours a day                                                                                                                                              |
| Frequency task                                                                                    | 4 to 5 days a week <sup>b</sup>                           | 1 day a month                                                                                                                                                                                        | 4 to 5 days a week                                                                                                                                                                | 4 to 5 days a week                                                                                                                                              |
| Is the task carried out in the<br>breathing zone of an employee<br>(distance head-product < 1 m)? | No                                                        | Yes                                                                                                                                                                                                  | Yes                                                                                                                                                                               | No                                                                                                                                                              |

#### (Table 7 continued)

|                                                                                                                                                                                | Scenario A                                                                             | Scenario B                            | Scenario C                                                                      | Scenario D                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|
| Is the working room being<br>cleaned daily?                                                                                                                                    | No                                                                                     | Νο                                    | Yes                                                                             | No                                    |
| Are inspections and<br>maintenance of<br>machines/ancillary equipment<br>being done at least monthly to<br>ensure good condition and<br>proper functioning and<br>performance? | Yes                                                                                    | Yes                                   | Yes                                                                             | Yes                                   |
| Volume of the working room?                                                                                                                                                    | < 100 m <sup>3</sup>                                                                   | < 100 m <sup>3</sup>                  | < 100 m <sup>3</sup>                                                            | < 100 m <sup>3</sup>                  |
| Ventilation of the working room?                                                                                                                                               | Mechanical and/or natural ventilation                                                  | Mechanical and/or natural ventilation | Mechanical and/or natural ventilation                                           | Mechanical and/or natural ventilation |
| Local control measures?                                                                                                                                                        | Glove boxes/bags <sup>c</sup>                                                          | No<br>-                               | No control measures at the source <sup>e</sup><br>Glove boxes/bags <sup>f</sup> | No control measures at the source     |
| Is the employee situated in a cabin?                                                                                                                                           | The worker works in a cabin<br>without a specific ventilation<br>system (control room) | No                                    | The worker does not work in a cabin                                             | The worker does not work in a cabin   |
| Is personal protective equipment                                                                                                                                               | None                                                                                   | None                                  | None                                                                            | None                                  |
| applied?                                                                                                                                                                       |                                                                                        | Filter mask FPP2                      | Filter mask FPP2                                                                |                                       |
| applied:                                                                                                                                                                       |                                                                                        | Full-face powered air respirator TMP3 | Full-face powered air respirator TMP3                                           |                                       |

The term "flame pyrolysis" represents a gas phase manufacturing process.
 (see in detail table 8 in Van Duuren Stuurman et al. Ann. Occup. Hyg. 2012, 56, 5, p. 525)

- <sup>b</sup> Continuous manufacturing
- <sup>c</sup> Completely enclosed manufacturing plant
- d Suspension 25 mg/mL
- e No separate enclosed filling system
- f Separate enclosed filling system

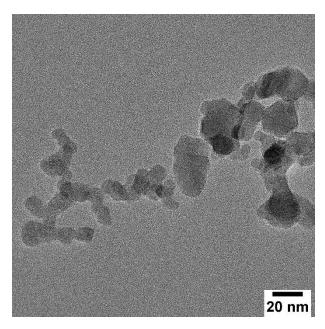
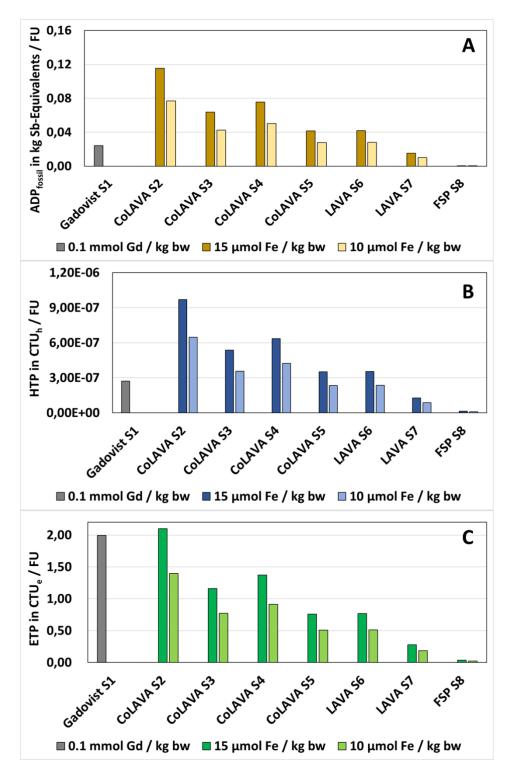
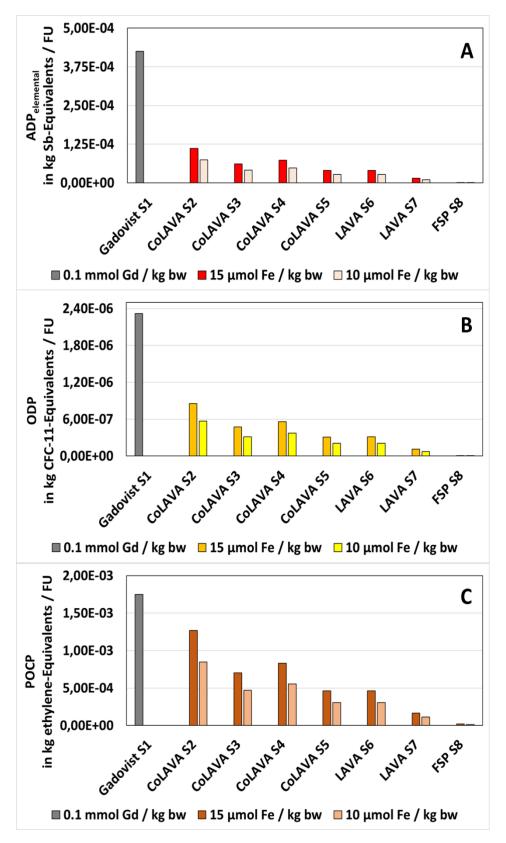





Figure 1: TEM image of iron oxide nanoparticles generated in a flame spray process on the pilot plant scale



*Figure 2:* LCIA of SiliFe nanoparticle synthesis by CoLAVA-process, γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles by LAVA-process and FSP as well as Gadobutrol (Gadovist<sup>®</sup>) as reference – Resource Depletion Potential of fossil fuels (A), Human Toxicity Potential (B) and Ecotoxicity Potential (C)



**Figure 3:** LCIA of SiliFe nanoparticle synthesis by CoLAVA-process,  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles by LAVA-process and FSP as well as Gadobutrol (Gadovist<sup>®</sup>) as reference – Resource Depletion Potential of metals and minerals (A), Ozone Depletion Potential (B) and Photochemical Ozone Creation Potential (C).

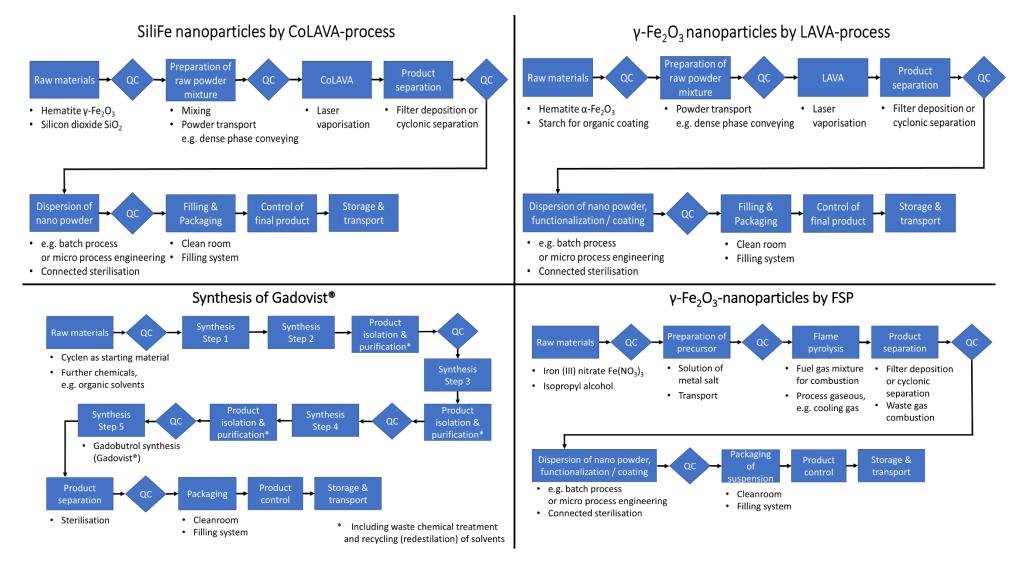



Figure 4: Process schemes for MRI diagnostic product containing SiliFe nanoparticle produced by CoLAVA-process, γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles produced by LAVA-process or FSP, alternatively containing Gadobutrol (Gadovist<sup>®</sup>).