SUPPORTING INFORMATION

High water soluble agrichemicals by engineered organic salts for reducing

adverse environmental impacts

*Paulo de Sousa Carvalho Junior^a, Gelton G. F. Guimarães^a, Luan F. Diniz^b, Javier Ellena^b, Caue Ribeiro^{b, *}*

^{*a*}Instituto de Química, Universidade Federal do Mato Grosso do Sul, 79074-460, Campo Grande, Mato Grosso do Sul, Brazil. ^{*b*}EPAGRI – Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina. Rd. Antônio Heil 6800, CP 88318-112, Itajaí, SC, Brazil. ^{*c*}Instituto de Física de São Carlos. Universidade de São Paulo CP 369, 13560-970, São Carlos, SP, Brazil. ^{*d*}Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-3): Electrochemical Process Engineering, 52425 Jülich, Germany; and Embrapa Instrumentação Rua XV de novembro 1452, CP 13560-206, São Carlos, SP, Brazil. e-mail: caue.ribeiro@embrapa.br

C 1		AMT FUM	AMT MAL-I	AMT MAL-II	(AMTMAL)
Compound	AMI				·2H ₂ O
Empirical formula	$C_{18}H_{34}N_{10}S_2$	$C_{13}H_{21}N_5O_4S$	$C_{39}H_{63}N_{15}O_{12}S_3$	C ₁₃ H ₂₁ N ₅ O ₄ S	C ₁₃ H ₂₅ N ₅ O ₆ S
Formula weight	454.67	342.95	343.41	343.41	379.44
Temperature/K	120	120.0	120.0	298	298
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	P21/c	ΡĪ
a/Å	12.018(4)	18.132(3)	13.495(3)	8.5300(3)	8.8250(4)
b/Å	22.054(6)	11.105(2)	16.262(3)	9.8310(3)	9.7640(5)
c/Å	9.300(3)	16.920(3)	23.781(5)	22.6570(8)	12.0800(6)
α/°	90	90	90	90	107.075(4)
β/°	101.617(5)	95.693(3)	99.226(4)	111.5740(10)	100.749(3)
$\gamma/^{\circ}$	90	90	90	90	96.427(3)
Volume/Å ³	2414.5(12)	3390.1(10)	5151.4(17)	1766.87(10)	962.04(8)
Ζ, Ζ'	4, 2	4, 2	4,3	4, 1	2, 1
$\rho_{calc}g/cm^3$	1.251	1.344	1.328	1.291	1.310
µ/mm ⁻¹	0.247	0.218	0.215	0.209	0.206
F(000)	976.0	1452.0	2184.0	728.0	404.0
Crystal size/mm ³	0.253 x 0.076 x 0.021	0.277 x 0.12 x 0.121	0.218 x 0.096 x 0.04	0.36 x 0.30 x 0.19	0.170 x 0.160 x 0.10
2Θ range for data collection/°	5.8 to 52.744	4.516 to 52.044	4.98 to 51.358	7.13 to 50.786	5.912 to 52.41
	$-15 \le h \le 15$	$-22 \leq h \leq 22$	$-16 \le h \le 16$,	$\text{-10} \le h \le 10$	$\text{-10} \le h \le 10$
Index ranges	$-27 \le k \le 27$	$-13 \le k \le 13$	$-19 \le k \le 19$,	$-11 \le k \le 11$	$-12 \le k \le 11$
	$-11 \le l \le 11$	$-20 \le l \le 20$	$-28 \le l \le 28$	$-27 \le l \le 27$	$-15 \le l \le 14$

Table S1. Crystal data and refinement parameters of AMT and AMT salts

Reflections collected	50224	67624	101144	6249	6996
Independent reflections	$\begin{array}{l} 4917 \; [R_{int} = \\ 0.1074, \; R_{sigma} = \\ 0.0515] \end{array}$	$\begin{array}{l} 6669 \; [R_{int} = \\ 0.0414, \; R_{sigma} = \\ 0.0267] \end{array}$	9760 [$R_{int} = 0.0436, R_{sigma} = 0.0210$]	$\begin{array}{l} 3227 \; [R_{int} = \\ 0.0182, \; R_{sigma} = \\ 0.0279] \end{array}$	$\begin{array}{l} 3806 \; [R_{int} = \\ 0.0776, \; R_{sigma} = \\ 0.0876] \end{array}$
Data/restraints/parameters	4917/17/292	6669/128/472	9760/26/651	3227/0/213	3806/0/249
Goodness-of-fit on F ²	1.030	1.089	1.028	1.011	1.027
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0562, wR_2 = 0.1369$	$R_1 = 0.0955, WR2$ = 0.2342	$R_1 = 0.0545,$ $wR_2 = 0.1436$	$R_1 = 0.0590,$ wR2 = 0.1761	$R_1 = 0.0651,$ $wR_2 = 0.1754$
Final R indexes [all data]	$R_1 = 0.0944, WR_2 = 0.1595$	$R_1 = 0.1009, wR2$ = 0.2379	$R_1 = 0.0671,$ $wR_2 = 0.1531$	$R_1 = 0.0789,$ wR2 = 0.1934	$R_1 = 0.1077,$ w $R_2 = 0.2094$
Largest diff. peak/hole / e Å ⁻³	0.64/-0.52	1.51/-0.66	1.38/-1.15	0.75/-0.28	0.24/-0.35

Table S2. The pK_{*a*} differences between AMT and the conformer (carboxylic acids). Following this approach, the salt formation is expected for both cases, even to HFUM that ΔpK_a is less than 2-3 pK_{*a*} units^[1].

Compound	pK _{a1}	$\Delta pK_a = pK_a(AMT) - pK_{al}(acid)$
Ametryn (AMT)	4.10	-
Fumaric acid (HFUM)	3.03	1.07
Maleic acid (HMAL)	1.83	2.27

Interaction	D····A(Å)	H····A(Å)	D-H···A(°)	Symmetry Code	
		AMT			
N2B-H2B····N3A	3.077(3)	2.249(2)	161.38(17)	x+1,+y,+z	
N4A-H4A…N1B	3.033(3)	2.182(2)	170.44(18)	x-1,+y,+z	
N4B-H4B…N1A	3.007(4)	2.155(3)	170.79(17)	x,y,z	
N2A-H2A…N3B	3.126(4)	2.269(3)	174.92(19)	x,y,z	
C9A–H9AB…N2B	3.487(5)	2.730(3)	136.28(25)	x-1,+y,+z	
C9A–H9AA…N4A	3.613(5)	2.673(3)	166.40(26)	x,-y+1/2,+z-1/2	
		AMT FUM			
N5-H5…O1A	2.687(4)	1.810(3)	173.66(22)	x,y,z	
N4A-H4A…O2A	2.771(4)	1.903(3)	168.36(22)	x,y,z	
N5B-H5B…O1B	2.783(11)	1.910(10)	171.04(36)	x,y,z	
N2B-H2B····O2B	2.522(18)	1.654(15)	167.84(69)	x,y,z	
O4A-H4AE…O1A	2.534(4)	1.696(3)	176.20(22)	-x+1,+y-1/2,-z+1/2+1	
N2A-H2A…O3A	2.833(5)	2.025(4)	152.22(25)	-x+1,+y+1/2,-z+1/2+1	
N4B-H4B····O3B	2.842(5)	2.059(4)	147.80(26)	-x+2,+y-1/2,-z+1/2	
O4B−H4BE…O1B	2.748(11)	1.914(15)	171.90(55)	-x+2,+y+1/2,-z+1/2	
С8В-Н8ВС…О3В	3.419(7)	2.677(4)	132.71(33)	-x+2,+y-1/2,-z+1/2	
C11A-H11A…O4A	3.125(5)	2.496(3)	123.75(24)	-x+1,+y+1/2,-z+1/2+1	
C4B-H4BDS1A	3.856(21)	2.920(1)	140.28(50)	x,-y+1/2+1,+z+1/2	
		AMT MAL-	Ι		
N3C-H3C…O2C	2.660(3)	1.810(2)	161.66(15)	x,y,z	
N1B-H1B····O2B	2.687(3)	1.830(2)	163.94(15)	x,y,z	
N4C-H1C… O1C	2.928(3)	2.053(2)	172.72(15)	x,y,z	
N2B-H2B····O1B	2.841(3)	1.963(2)	174.92(16)	x,y,z	
N4A-H4A…O1A	2.875(3)	1.999(2)	173.54(16)	-x,-y+1/2,-z+1/2	
N3A–H3A…O2A	2.666(3)	1.797(2)	168.69(16)	-x,-y+1/2,-z+1/2	
N2C-H2C····O4C	2.830(3)	1.952(2)	175.29(16)	x-1,+y,+z	
N4B-H4B…O4B	2.921(3)	2.050(2)	170.08(16)	x+1,+y,+z	
N2A–H2A…O4A	2.886(3)	2.015(2)	169.82(16)	-x+1,+y+1/2,-z+1/2	

Table S3. Geometric parameters of the H-bonds in the AMT and AMT salts.

С7А–Н7АВ…О4В	3.346(4)	2.546(2)	138.83(23)	x,y,z
C5A-H5AE…O2B	3.447(9)	2.629(2)	141.11(49)	x,y,z
С9С-Н9СВ…О2В	3.341(3)	2.516(2)	141.75(17)	-x+1,-y+1,-z+1
С9С-Н9СС…О2С	3.441(3)	2.497(2)	161.73(16)	-x+1,-y+1,-z+1
С9А-Н9АА…О2В	3.413(3)	2.441(2)	171.24(16)	-x+1,+y-1/2,-z+1/2
С9А-Н9АС…О2С	3.346(3)	2.5382)	139.70(17)	-x+1,+y-1/2,-z+1/2
С9В–Н9ВА…О2А	3.453(3)	2.525(2)	158.04(17)	x+1,+y+1,+z
С7В-Н7ВВ…ОЗА	3.553(12)	2.603(2)	161.42(50)	x+1,-y-1/2,+z+1/2
С7В–Н7ВС…ОЗС	3.312(9)	2.682(2)	122.42(50)	-x+2,-y+1,-z+1
С9А-Н9АС…S1С	3.736(3)	2.941(1)	138.91(16)	-x+1,+y-1/2,-z+1/2
		AMT MAL-II	[
N1-H1…O2	2.696(3)	1.842(2)	171.87(15)	x,y,z
N2-H2…O1	2.855(4)	1.999(3)	173.49(17)	x,y,z
N4–H4… O3	3.008(3)	2.196(3)	159.29(17)	x,-y+1/2+1,+z+1/2
С9–Н9А…О4	3.424(4)	2.488(2)	164.90(20)	-x+2,-y+2-1,-z+1
С9–Н9В…О1	3.381(4)	2.589(2)	139.99(21)	-x+2,-y+1,-z+1
С11-Н11…О3	3.490(6)	2.759(4)	136.22(22)	-x+2,-y+1,-z+1
		(AMTMAL)-2H	2 0	
N3-H3····O2	2.701(2)	1.846(2)	172.27(13)	x,y,z
N4–H4…O1	2.870(3)	2.011(2)	176.67(16)	x,y,z
N2-H2···OW1	3.011(4)	2.187(3)	160.47(18)	-x,-y+1,-z
OW1-HW1B····OW2B	2.687(19)	1.965(19)	142.20(57)	x,y,z
OW2B-HW2A…O1	2.756(26)	2.003(2)	147.16(80)	-x+1,-y+1,-z+1
С12-Н12…О3	3.417(4)	2.489(2)	175.39(20)	-x+2,-y+2,-z+2
С8-Н8В…О3	3.594(3)	2.709(3)	153.42(13)	x-1,+y-1,+z
С9–Н9В…О4	3.372(5)	2.552(3)	143.44(25)	-x+1,-y+2,-z+1

COMPLEMENTARY FIGURES AND TABLES

FIG. S1. Asymmetric unit of (a) AMT ($P2_1/C$, Z' = 2), (b) AMT-FUM ($P2_1/C$, Z' = 2), (c) AMT-MAL-I ($P2_1/C$, Z' = 3), (d) AMT-MAL-II ($P2_1/C$, Z' = 1) and (e) (AMT-MAL)·H₂O ($P\overline{1}$, Z' = 1) with labelling the symmetry-independent molecules. The ellipsoid plot are drawn at 50% probability level. The lowest occupancy parts of disordered fragments are shown with 50% transparency for clarity.

Fig. S2: Along the [100] direction, adjacent AMT chains stacks parallel to each other via CH••• Π (light green dash line) and S••• Π (orange dash line) interactions resulting in domains of layered structure.

Fig. S3. In the unit cell of AMT (Z' = 2), the A and B conformers are alternately arranged along the [100] direction, such that, the independent molecules are offset each other by 55.34°. In this figure, the red plane defines to that formed by the main plane of conformer A while the blue one is define by conformer B. The molecular overlay of highest occupancy parts of A and B conformers from AMT superimposed through s-triazine groups.

FIG. S4: FOURIER DIFFERENCE MAP FOR THE (*A*) MOLECULE A AND B FROM AMT-FUM SALT. IT SEEN THE PROTONATION OF AMT MOLECULE ON THE N5-ATOM FOR BOTH CASES. (B) MOLECULAR CONFORMATIONS OF AMT CATIONS (A AND B MOLECULES) IN AMT-FUM SALT. HIGHEST OCCUPANCY PARTS CONSIDERED IN THE PRESENTATION.

Fig. S5 - (a) Fourier difference maps of both A and B molecules of AMT-MAL-I showing the presence of an H-atom attached to N5 atom ones for both cases. (b) Overlay of the AMT⁺ conformers of AMT-MAL-I using the s-triazine groups as the common reference.

Fig. S6 - Beside the conformational and ionization multiplicity of AMT⁺, the polymorphism of ametryn maleate is also associated to diversity of cation-anion assemblies. (a) The ionic pair in AMT-MAL-I interact that way carboxylic of acid and the sulfur-methyl groups of AMT are cisoriented. Opposite situation are found in AMT-MAL-II. (c) $\pi \cdots \pi$ interaction between AMT⁺ molecules in AMT-MAL-I.

Fig. S7 - (a) The packing of (AMT-MAL)·2H₂O illustrating the water channels (blue circles - viewed along [100] direction). (b) The (H₂O)₂ clusters featuring in the crystal structure (water channel core). (c) $\pi \cdots \pi$ Interactions between AMT⁺···H₂O assemblies.

Figure S8 - Diffractograms of AMT and its salts. For all compounds, the experimental and calculated PXRD patterns show an excellent agreement which indicates the purity (unique phase) of the samples.

Figure S10 - Aqueous solubility (blue bars) and melting point (line) of AMT and its salts.

Ametryn				
	$\mathbf{E} + \mathbf{E}_{\mathbf{ZPVE}}$, kcal. mol ⁻¹			
A -643115,0062				
В	-643118,0213			
Ametryn fumarate				
A*	-643424,1252			
B*	-643426,9791			
Ametryn Fumarate Deprotonated				
A†	-643108,0278			
B†	-643108,8987			
$[E(A^{\dagger}) + E(A^{\dagger})_{ZPVE}] - [E(A) + E(A)_{ZPVE}]$	-6,9784275			
$[E(B\dagger) + E(B\dagger)_{ZPVE}] - [E(B) + E(B)_{ZPVE}]$	-9,122595			

 Table S3 - Energy differences between the AMT conformer from AMT and AMT-FUM

Figure S11. Herbicide 4.98 to 51.358 application system

Similarly, applications of AMT salts were tested. These application solutions prepared dissolving an amounts of AMT-FUM and AMT-MAL-I salts equivalent to the to 1.0 kg ha⁻¹ dose in water in order to simulate the field application of 400 L ha⁻¹. After stirring, 150 rpm during 5 min, an aliquot of the solution was collected to determine the soluble concentration of AMT in solution before spraying. The GIW of these systems were compared with the control treatment, the 0 dose of AMT. All experiments were carried out in triplicate.

After 14 days of herbicide application, the plants were cut and dried in a forced-air oven at 70 °C for 72h to determine the dry matter content (DM). The herbicidal efficacy of AMT (at different doses), AMT-FUM and AMT-MAL-I were estimated through of the growth inhibition of *Brachiaria decumbens* after herbicide application. The Growth Inhibition index (v) was calculated using the equation:

$$v = 100 - [(DM_x - DM_i)/(DM_{control} - DM_i)] \ge 100$$
 Equation 1

where DM_x is the dry matter content of each sample, DM_i is the dry matter average content before

AMT application, and $DM_{control}$ is the dry matter content of control treatment (0 dose of AMT).

REFERENCES

- [1] S. L. Childs, G. P. Stahly, A. Park, *Mol. Pharm.* 2007, 4.
- [2] a) A. D. Burrows, in Supramolecular Assembly via Hydrogen Bonds I (Ed.: D. M. P. Mingos), Springer Berlin Heidelberg, Berlin, Heidelberg, 2004; b) V. R. Aldilla, M. Bhadbhade, S. Bhattacharyya, N. Kumar, A. M. Rich, C. E. Marjo, CrystEngComm 2017, 19; c) T. Le, M. Bhadbhade, J. Gao, J. M. Hook, C. E. Marjo, CrystEngComm 2016, 18; d) G. J. Perpétuo, J. Janczak, J Mol Struct 2018, 1152.
- [3] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, *Acta Crystallogr B* 2016, 72.
- [4] J. Bernstein, R. J. Davey, J.-O. Henck, Angew Chem Int Ed Engl 1999, 38.
- [5] Bruker, in *Bruker AXS Inc*, Madison, Wisconsin, USA., 2001.
- [6] R. W. W. Hooft, (Ed.: N. BV), Delft, The Netherlands, 1998.
- [7] Z. Otwinowski, W. Minor, in *Methods in Enzymology*, 276 (Ed.: Charles W. Carter, Jr.), Academic Press, **1997**.
- [8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J Appl Crystallogr* **2009**, *42*.
- [9] G. Sheldrick, Acta Crystallogr C 2015, 71.
- [10] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *J Appl Crystallogr* **2008**, *41*.
- [11] W. I. F. David, *Structure Determination from Powder Diffraction Data*, Oxford University Press, **2002**.
- [12] P. Hohenberg, W. Kohn, *Physical Review* **1964**, *136*, B864-B871; bW. Kohn, L. J. Sham, *Physical Review* **1965**, *140*, A1133-A1138.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Wallingford CT, 2009.

- [14] Y. Zhao, D. Truhlar, Theor Chem Account 2008, 120.
- [15] C. o. Europe, European Pharmacopoeia 5th Ed. Main Volume 5.0, 2005 with Supplements 5.1 and 5.2, Renouf Publishing Company Limited, 2004; bH. M. Eirkson C, Osbourne CM, Sayre PG, Zeeman M in Environmental assessment technical assistance handbook, Vol. 31 (Ed.: U. S. F. a. D. Administration), Washington DC, 1987.
- [16] a) V. J. Kilmer, I. T. Alexander, Soil Science 1949, 68; b) V. V. H. Alvarez, R. Novais, L. Dias, J. A. Oliveira, Pesq. agropec. bras. 2000, 52; c) EMBRAPA, 3th ed. (Ed.: E. B. d. P. Agropecuária), Embrapa-SEA, Brasília, 2017; d) D. W. Nelson, L. E. Sommers, in Methods of Soil Anlysis. Part 3 Chemical Methods, 5 (Ed.: D. L. Sparks, et. al.), SSSA and ASA, Madison, WI, 1996.
- [17] R. F. Novais, J. C. L. Neves, N. F. Barros, in *Métodos de pesquisa em fertilidade do solo* (Eds.: W. E. Garrido, J. D. Araújo, S. Lourenço), Embrapa-SEA, Brasília, **1991**.