Supporting Information for

Aerobic Oxidation of Alcohols with Air Catalyzed by Decacarbonyldimanganese

Shan-Shui Meng*, Li-Rong Lin, Xiang Luo, Hao-Jun Lv, Jun-Ling Zhao*, Albert S. C. Chan*

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 China.

E-mail: mengshsh@mail.sysu.edu.cn; <u>zhaojling3@mail.sysu.edu.cn</u>; chenxz3@mail.sysu.edu.cn

Table of Content

General Information	1
General procedure for the oxidation of alcohols	1-13
Large-scale experiments	14
Mechanism experiments	14-17
KIE experiments	14
¹⁸ O-labeled experiments	14
EPR experiments	15
Operando IR analysis	16
Radical-trapping experiment	17
Proposed mechanism (R ³ = COOH)	17
NMR spectra	18-63

General Information

Unless stated otherwise, all reactions were carried out in glassware under air . All solvents were directly used without any pretreatment. NMR spectras were recorded on a Bruker Avance III 400, or Ascend TM 500 spectrometer and were recorded in ppm (δ) downfield of TMS ($\delta = 0$) in deuterated solvent. Signal splitting patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), or multiplet (m), with coupling constants (J) in hertz. Mass spectra were conducted at LCMS-IT-TOF(ESI). EPR spectra was detected by Bruker A300. Operando IR analysis was conducted by Mettler-Toledo ReactIR 15 equipped with a 6.35 mm diameter DiComp probe.

General Procedure for the oxidation of alcohols

To a solution of alcohols (primary alcohols, secondary alcohols, 1,2-diols, 1,2-amino alcohols et al) (0.2mmol) in 1ml toluene in 15 ml pressure tube was added $Mn_2(CO)_{10}$ (0.01mmol, 3.68mg), the color of the solution was orange, and the solution was stirred at 120°C under air and the color became light yellow. After 8-12h, black sediment appeared and the solution was cooled to room temperature, the product **2** or **4** was isolated by silica gel column chromatography (PE:EA=50:1). (Caution: The solvent should be removed under low temperature.)

Benzaldehyde 2a

Colorless oil, 95% yield. Analytical data for 2a:¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.94 – 7.82 (m, 2H), 7.67 – 7.58 (m, 1H), 7.53 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.42, 136.40, 134.48, 129.75, 129.01.

4-methylbenzaldehyde **2b**

Colorless oil, 96% yield. Analytical data for **2b**: ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.98, 145.55, 134.21, 129.84, 129.71, 21.85.

4-methoxybenzaldehyde 2c

Colorless oil, 98% yield. Analytical data for **2c:**¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.84, 164.62, 132.00, 129.96, 114.32, 55.59.

4-isopropylbenzaldehyde 2d

Colorless oil, 95% yield. Analytical data for **2d:** ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 2.99 (hept, *J* = 6.9 Hz, 1H), 1.28 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 192.04, 156.25, 134.60, 130.02, 127.15, 34.48, 23.63.

[1,1'-biphenyl]-4-carbaldehyde 2e

Colorless oil, 92% yield. Analytical data for **2e:** ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.68 – 7.60 (m, 2H), 7.53 – 7.45 (m, 2H), 7.46 – 7.39 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.96, 147.22, 139.74, 135.22, 130.30, 129.04, 128.50, 127.71, 127.39.

4-(trifluoromethyl)benzaldehyde 2f

Colorless oil, 91% yield. Analytical data for **2f:** ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.12, 138.64, 135.60 (q, J = 32.7 Hz), 129.92, 126.11 (q, J = 3.7 Hz), 123.43 (d, J

= 272.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.26.

1-naphthaldehyde 2g

Colorless oil, 94% yield. Analytical data for **2g:** ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 9.26 (d, J = 8.7 Hz, 1H), 8.09 (s, 1H), 8.00 (d, J = 7.0 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.70 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.61 (ddd, J = 10.4, 8.0, 4.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.58, 136.70, 135.33, 133.76, 131.44, 130.57, 129.10, 128.50, 126.99, 124.90.

2,4,6-trimethylbenzaldehyde 2h

Colorless oil, 95% yield. Analytical data for **2h**: ¹H NMR (400 MHz, CDCl₃) δ 10.55 (s, 1H), 6.89 (s, 2H), 2.57 (s, 6H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.98, 143.83, 141.49, 130.53, 129.98, 21.46, 20.49.

3,4-dimethoxybenzaldehyde 2i

Colorless oil, 96% yield. Analytical data for **2i**: ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.55 – 7.38 (m, 2H), 7.00 (t, *J* = 11.3 Hz, 1H), 3.95 (d, *J* = 10.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 190.83, 154.44, 149.57, 130.09, 126.80, 110.38, 108.90, 56.13, 55.94.

3,4,5-trimethoxybenzaldehyde 2j

Colorless solid, 98% yield. Analytical data for **2j**: ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 7.14 (s, 2H), 3.95 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 191.07, 153.63, 143.57, 131.71, 106.69, 60.98, 56.26.

4-hydroxybenzaldehyde **2k**

Colorless solid, 96% yield. Analytical data for **2k**: ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 1H), 7.82 (d, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 8.5 Hz, 2H), 6.65 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 191.39, 161.80, 132.59, 129.75, 116.06.

3-phenylpropanal 21

Colorless oil, 69% NMR yield using 0.2mmol CH₃NO₂ as standard. Analytical data for **2l**: ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.19 (t, *J* = 7.9 Hz, 3H), 2.95 (t, *J* = 7.5 Hz, 2H), 2.76 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.61, 140.38, 128.64, 128.33, 126.34, 45.29, 28.14.

(Rac)-Trans-2-phenylcylcopropane-1-carbaldehyde 2m

Colorless oil, 63% yield. Analytical data for **2m**: ¹H NMR (500 MHz, CDCl₃) δ 9.33 (d, *J* = 4.6 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 2H), 2.63 (t, *J* = 9.9 Hz, 1H), 2.18 (dd, *J* = 10.6, 6.5 Hz, 1H), 1.73 (dt, *J* = 9.8, 5.0

Hz, 1H), 1.53 (dd, *J* = 12.5, 7.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 199.73, 138.97, 128.62, 126.86, 126.28, 33.81, 26.61, 16.47.

3-methylbutanal 2n

Colorless oil, 32% NMR yield using 0.2mmol CH₃NO₂ as standard. Analytical data for **2n**: ¹H NMR (400 MHz, CDCl₃) δ 9.84 – 9.68 (m, 1H), 2.30 (ddd, *J* = 6.7, 4.7, 2.2 Hz, 2H), 2.27 – 2.15 (m, 1H), 0.98 (t, *J* = 5.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.94, 52.56, 23.44, 22.54.

H₃C °0

Heptanal 20

Colorless oil, 50% NMR yield using 0.2mmol CH₃NO₂ as standard. Analytical data for **20**: ¹H NMR (400 MHz, CDCl₃) δ 9.83 – 9.68 (m, 1H), 2.49 – 2.36 (m, 2H), 1.71 – 1.56 (m, 2H), 1.30 (s, 6H), 0.92 – 0.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.91, 43.88, 31.51, 28.80, 22.42, 22.01, 13.95.

H₃C²

Octanal 2p

Colorless oil, 36% NMR yield using 0.2mmol CH₃NO₂ as standard. Analytical data for **2p**: ¹H NMR (400 MHz, CDCl₃) δ 9.76 (m, 1H), 2.42 (td, *J* = 7.4, 1.5 Hz, 2H), 1.70 – 1.57 (m, 2H), 1.33 – 1.26 (m, 8H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.94, 43.89, 31.60, 29.10, 29.00, 22.56, 22.05, 14.01.

4-chlorobenzaldehyde **2q**

Colorless oil, 91% yield. Analytical data for 2q: ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s,

1H), 7.83 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.90, 141.07, 134.73, 130.93, 129.49.

4-bromobenzaldehyde 2r

Colorless oil, 92% yield. Analytical data for **2r**: ¹H NMR (400 MHz, CDCl3) δ 9.98 (s, 1H), 7.75 (dd, J = 8.5, 2.0 Hz, 2H), 7.69 (dd, J = 7.7, 2.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl3) δ 191.08, 135.09, 132.46, 130.99, 129.80.

2-chlorobenzaldehyde 2s

Colorless oil, 92% yield. Analytical data for **2s**: ¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 7.93 (dd, J = 7.7, 1.7 Hz, 1H), 7.54 (ddd, J = 8.0, 7.3, 1.8 Hz, 1H), 7.46 (dd, J = 8.0, 1.1 Hz, 1H), 7.42 – 7.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.84, 137.96, 135.14, 132.47, 130.62, 129.38, 127.30.

2-phenylacetaldehyde 2t

Colorless oil, 94% yield. Analytical data for **2t**: ¹H NMR (400 MHz, CDCl₃) δ 9.74 (t, J = 2.4 Hz, 1H), 7.37 (t, J = 7.3 Hz, 2H), 7.31 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 7.1 Hz, 2H), 3.68 (d, J = 2.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.51, 131.88, 129.66, 129.04, 127.45, 50.60.

Acetophenone 4a

Colorless oil, 97% yield. Analytical data for 4a: 1H NMR (500 MHz, CDCl₃) & 7.95 (d,

J=8.0 Hz, 2H), 7.55 (t, *J*=7.4 Hz, 1H), 7.45 (t, *J*=7.6 Hz, 2H), 2.59 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 198.14, 137.10, 133.11, 128.57, 128.30, 26.58.

1-(p-tolyl)ethan-1-one 4b

Colorless oil, 94% yield. Analytical data for **4b**: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.7 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 2.57 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.86, 143.88, 134.72, 129.25, 128.45, 26.53, 21.63.

1-(4-methoxyphenyl)ethan-1-one 4c

Colorless oil, 89% yield. Analytical data for **4c**: ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.81, 163.49, 130.60, 130.34, 113.69, 55.47, 26.35.

1-(4-fluorophenyl)ethan-1-one 4d

Colorless oil, 91% yield. Analytical data for **4d**: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (ddd, J = 6.9, 5.4, 2.1 Hz, 2H), 7.13 (t, J = 8.7 Hz, 2H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.47, 165.75 (d, J = 254.6 Hz), 133.58 (d, J = 2.9 Hz), 130.94 (d, J = 9.3 Hz), 115.63 (d, J = 21.9 Hz), 26.51. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.37.

1-([1,1'-biphenyl]-4-yl)ethan-1-one 4e

White solid, 93% yield. Analytical data for **4e**: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.83, 145.81, 139.89, 135.86, 128.98, 128.94, 128.26, 127.30, 127.25, 26.70.

1-(4-bromophenyl)ethan-1-one 4f

Colorless oil, 97% yield. Analytical data for **4f**: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (m, 2H), 7.71 – 7.40 (m, 2H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.00, 135.82, 131.90, 129.85, 128.31, 26.55.

 CH_3

Propiophenone 4g

Colorless oil, 91% yield. Analytical data for **4g**: ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.2 Hz, 2H), 7.54 (q, J = 6.6 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 3.09 – 2.89 (m, 2H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.81, 136.91, 132.88, 128.55, 127.97, 31.77, 8.23.

3,4-dihrdronaphthalen-1(2H)-one 4h

Colorless oil, 92% yield. Analytical data for **4h**: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.8 Hz, 1H), 7.47 (td, *J* = 7.5, 1.4 Hz, 1H), 7.36 – 7.13 (m, 2H), 2.97 (t, *J* = 6.1 Hz, 2H), 2.78 – 2.54 (m, 2H), 2.14 (dt, *J* = 12.6, 6.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 198.50, 144.52, 133.42, 132.63, 128.79, 127.19, 126.65, 39.19, 29.72, 23.30.

Cyclopropyl(phenyl)methanone 4i

Colorless oil, 86% yield. Analytical data for **4i**: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, *J* = 5.2, 3.3 Hz, 2H), 7.60 – 7.52 (m, 1H), 7.52 – 7.38 (m, 2H), 2.68 (tt, *J* = 7.8, 4.6 Hz, 1H), 1.29 – 1.21 (m, 2H), 1.05 (dq, *J* = 7.2, 3.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.74, 138.01, 132.75, 128.52, 128.03, 17.16, 11.69.

1-(3,4-dimethoxyphenyl)ethan-1-one 4j

Colorless oil, 93% yield. Analytical data for **4j**: ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, J = 8.3, 2.0 Hz, 1H), 7.53 (d, J = 1.9 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 3.95 (d, J = 5.8 Hz, 6H), 2.58 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 196.85, 153.30, 149.00, 130.51, 123.31, 110.06, 109.94, 56.08, 56.00, 26.23.

1-(3,4,5-trimethoxyphenyl)ethan-1-one 4k

Colorless oil, 96% yield. Analytical data for 4k: ¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 2H), 3.92 (d, J = 1.8 Hz, 9H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.93,

2-ethoxy-1,2-diphenylethan-1-one 41

Colorless solid, 76% yield. Analytical data for **4I**: ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 7.9 Hz, 2H), 7.51 (dd, *J* = 13.0, 7.2 Hz, 3H), 7.39 (dt, *J* = 21.4, 7.7 Hz, 4H), 7.33 – 7.28 (m, 1H), 5.61 (s, 1H), 3.77 – 3.46 (m, 2H), 1.30 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 197.71, 136.61, 135.01, 133.17, 129.19, 128.78, 128.41, 128.34, 127.36, 85.32, 65.51, 15.29.

Benzophenone 4m

White solid, 96% yield. Analytical data for **4m**: ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.74 (m, 4H), 7.58 (t, *J* = 7.4 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 196.79, 137.61, 132.45, 130.08, 128.31.

Bis(4-fluorophenyl)methanone 4n

White solid, 91% yield. Analytical data for **4n**: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.75 (m, 4H), 7.23 – 7.07 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 193.83, 165.41 (d, *J* = 254.4 Hz), 133.70 (d, *J* = 3.0 Hz), 132.51 (d, *J* = 9.1 Hz), 115.57 (d, *J* = 21.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.75.

di-p-tolylmethanone 40

White solid, 97% yield. Analytical data for **4o**: ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.1 Hz, 4H), 7.27 (d, *J* = 8.0 Hz, 4H), 2.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 196.32, 142.94, 135.23, 130.20, 128.92, 21.64.

9H-xanthen-9-one 4p

White solid, 99% yield. Analytical data for **4p**: ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.4 Hz, 2H), 7.50 (dt, J = 14.2, 7.3 Hz, 4H), 7.34 – 7.24 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.97, 144.46, 134.71, 134.17, 129.10, 124.35, 120.33.

Benzo[b]thiophen-3-yl(phenyl)methanone 4q

Yellow solid, 98% yield. Analytical data for **4q**: ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 8.0 Hz, 1H), 7.98 (s, 1H), 7.95 – 7.79 (m, 3H), 7.65 – 7.55 (m, 1H), 7.53 – 7.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 190.92, 140.08, 139.31, 138.35, 137.47, 134.82, 132.39, 129.54, 128.49, 125.72, 125.63, 125.22, 122.39.

1,2-di(thiophen-3-yl)ethane-1,2-dione **4r** Yellow oil, 91% yield. Analytical data for **4r**: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 3.9, 0.9 Hz, 2H), 7.85 (dd, J = 4.9, 0.9 Hz, 2H), 7.21 (dd, J = 4.7, 4.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 182.44, 138.62, 137.52, 137.29, 128.70.

Methyl 2-oxo-2-phenylacetate 4s

Colorless oil, 93% yield. Analytical data for **4s**: ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.93 (m, 2H), 7.73 – 7.64 (m, 1H), 7.52 (dd, *J* = 10.7, 4.8 Hz, 2H), 3.99 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 186.06, 164.05, 135.01, 132.44, 130.11, 128.92, 52.80.

N-benzyl-2-oxo-2-phenylacetamide 4t

Colorless oil, 96% yield. Analytical data for **4t**: ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 8.3, 1.1 Hz, 2H), 7.68 – 7.59 (m, 1H), 7.48 (dd, J = 10.8, 4.8 Hz, 2H), 7.40 – 7.28 (m, 5H), 4.58 (d, J = 6.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.66, 161.54, 137.11, 134.49, 133.34, 131.30, 128.89, 128.54, 127.93, 127.89, 43.49.

Acetylferrocene 4u

Yellow solid, 86% yield. Analytical data for **4u**: ¹H NMR (500 MHz, CDCl₃) δ 4.86 – 4.70 (m, 2H), 4.55 – 4.42 (m, 2H), 4.20 (s, 2H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.24, 79.29, 72.37, 69.89, 69.63, 27.45.

Cyclohexyl(phenyl)methanone 4v

Yellow oil, 86% yield. Analytical data for **4**v: ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.4 Hz, 6H), 7.54 (t, *J* = 7.3 Hz, 3H), 7.46 (t, *J* = 7.6 Hz, 5H), 3.29 (t, *J* = 3.0 Hz, 1H), 1.97 – 1.77 (m, 13H), 1.74 (d, *J* = 12.8 Hz, 4H), 1.57 – 1.33 (m, 14H), 1.33 – 1.27 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 203.91, 136.37, 132.73, 128.59 128.26, 45.64, 29.43, 25.98, 25.87.

(5R, 5Ar, 8As)-5-(3,4,5-trimethoxyphenyl)-5,5a,8,8a-

tetrahydrofuro[2',3':6,7]naphtha[2,3-d][1,3]dioxole-7,9-dione 8a

Colorless oil, 43% yield. Analytical data for **8a**: ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 6.71 (s, 1H), 6.39 (s, 2H), 6.10 (dd, *J* = 7.5, 1.1 Hz, 2H), 4.85 (d, *J* = 4.3 Hz, 1H), 4.57 (dd, *J* = 9.2, 7.6 Hz, 1H), 4.36 (dd, *J* = 10.4, 9.4 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 6H), 3.58 – 3.47 (m, 1H), 3.28 (dd, *J* = 15.5, 4.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.48, 153.23, 153.10, 148.15, 141.55, 137.68, 132.13, 128.21, 109.68, 107.65, 106.13, 102.42, 67.02, 60.80, 56.30, 46.72, 44.68, 43.47, 29.71.

Large-scale experiments

To a solution of alcohols in 10ml toluene in 500 ml pressure tube was added $Mn_2(CO)_{10}$ (x mol%), the color of the solution was orange, and the solution was stirred at 120°C under air, after 3h, opened the sealed tube replacing the fresh air. After 8-12h, black sediment appeared and the solution was cooled to room temperature, the product was isolated by silica gel column chromatography (PE:EA=50:1). (Caution: The solvent should be removed under low temperature.)

Mechanism experiments

KIE experiments

KIE = 2.3

¹⁸O-labeled experiments.

To a solution of alcohols (0.2mmol) in 1ml degassed toluene in 10 ml Schlenk tube was added $Mn_2(CO)_{10}$ (0.01mmol, 3.68mg), and the tube was filled with ¹⁸O₂, and the solution was stirred at 120°C until the substrate was disappeared, the product was isolated by silica gel column chromatography (PE:EA=10:1). The molecule weight was detected by HPLC-MS.

Operando IR analysis

The model reaction was monitored by Mettler-Toledo ReactIR 15 equipped with a 6.35 mm diameter DiComp probe.

EPR spectra for the oxidation of **catalyst**. Conditions: $Mn_2(CO)_{10}$ (12 mg), at 363K, under air. The signal was collected after heating 0.5h.

EPR spectra for the oxidation of **3m**. Conditions: **3m** (55.2 mg), $Mn_2(CO)_{10}$ (12 mg), at 363K, under air. The signal was collected after heating 1h.

Radical-trapping experiment.

 $Mn_2(CO)_{10}$ (38.9 mg, 0.1 mmol) and BHT (33.0 mg, 0.15 mmol) in 1 ml toluene were added to 15 ml sealed tube, then the solution was stirred at 120 °C, after 45 min, the reaction was detected by HPLC-MS.

Proposed mechanism ($R^3 = COOH$).

NMR spectra

2a¹³C NMR

2b ¹H NMR

2b ¹³C NMR

2c¹H NMR

2c¹³C NMR

2d ¹H NMR

2e¹H NMR

2e ¹³C NMR

2f ¹H NMR

2f¹³C NMR

2f ¹⁹F NMR

2h ¹H NMR

2h ¹³C NMR

2i ¹H NMR

2j ¹H NMR

2j ¹³C NMR

2k ¹H NMR

2k ¹³C NMR

2I ¹H NMR

21 13C NMR

2m ¹H NMR

2m ¹³C NMR

2n ¹H NMR

2n ¹³C NMR

20¹H NMR

20¹³C NMR

2p¹H NMR

2p¹³C NMR

2q ¹H NMR

2q¹³C NMR

2r ¹H NMR

2r 13C NMR

2s ¹H NMR

2t ¹H NMR

2t ¹³C NMR

4a ¹H NMR

4a ¹³C NMR

4b ¹H NMR

4b ¹³C NMR

4c ¹³C NMR

4d ¹H NMR

4d ¹³C NMR

4d 19F NMR

4e ¹³C NMR

4f ¹H NMR

4f ¹³C NMR

4g¹³C NMR

4h ¹H NMR

4h ¹³C NMR

4i ¹H NMR

4i 13C NMR

4j ¹H NMR

4j ¹³C NMR

4k ¹H NMR

4l ¹H NMR

4I 13C NMR

4m ¹³C NMR

4n ¹H NMR

4n ¹⁹F NMR

40¹³C NMR

4p ¹H NMR

4p ¹³C NMR

4q ¹H NMR

4q ¹³C NMR

4r ¹H NMR

4r ¹³C NMR

4s ¹H NMR

4s ¹³C NMR

4t ¹H NMR

4t ¹³C NMR

4u ¹H NMR

4u ¹³C NMR

4v ¹H NMR

8a ¹H NMR

8a 13C NMR

