Copper and Cobalt Co-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling Reaction of (Benzo)Azoles

Yanrong Li,^a Fen Qian,^a Xia Ge,^a Tao Liu,^a Hitesh B. Jalani,^{c,d} Hongjian Lu^{a*} and Guigen Li^{a,b*}

^aInstitute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical, Engineering, Nanjing University, Nanjing, 210093, China

^bDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA

^cDepartment for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

^{*d*}Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Supporting Information

Table of Contents

1. General Information S2
2. Experimental Section S3
2.1 General Procedure For the Objective Product
2.2 Aerobic and Anaerobic Control Experiments
2.3 Radical Trapping Experiments
2.4 Cobalt-Copper Cocatalyzed Self-coupling and Cross-coupling Control Experiments
3. References······S15
4. ¹ H and ¹³ C NMR Spectra······S16

1. General Information

All the solvents and commercially available reagents were purchased from commercial sources and used directly. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715). Visualization of TLC was achieved by the use of UV light (254 nm). Column chromatography was performed on silica gel (300-400 mesh) using a forced flow of 0.5–1.0 bar. ¹H NMR was recorded on FT AM 400 (400 MHz). Chemical shifts were reported in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, td = triplet of doublet, ddd = doublet of doublet of doublet, m = multiplet. Coupling constants, J, were reported in hertz (Hz). The fully decoupled ¹³C NMR was recorded on FT AM 400 (100 MHz). Infrared (IR) spectra were recorded on a Nicolet 6700 spectrophotometer and reported as wave number (cm⁻¹). High resolution mass spectra were obtained by using the UHD Accurate-Mass Q-TOF.

2. Experimental Section

2.1 General Procedure For the Objective Product

A 35 mL oven-dried pressure tube was charged with **1a** benzothiazole (27.0 mg, 0.2 mmol), **2a** benzo[d]oxazole (35.8 mg, 0.3 mmol), Cu(OAc)₂ •H₂O (8 mg, 0.04 mmol), Co(NO₃)₂ •6H₂O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), and 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL). The tube was then sealed and stirred vigorously at 130 °C for 18 h. Then cooled to room temperature, diluted with ethyl acetate, filtered through a celite pad and concentrated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane/hexane: 1/1, v/v) to give the desired product (**benzo[d]thiazol-2-yl)benzo[d]oxazole** (**3a**, 45 mg, 73% yield). The R_f values of TLC for **3a**, self-coupling products 2,2'-bibenzothiazole **4a** and 2,2'-bibenzoxazole **5a** are 0.36, 0.54 and 0.27, respectively.

2-(benzo[d]thiazol-2-yl)benzo[d]oxazole (3a)

White solid, m.p.: 185-186 °C, 37 mg, yield: 73%. (known compound¹) ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 7.9 Hz, 1H), 7.89 (d, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.65-7.53 (m, 2H), 7.49 (dd, *J* = 17.5, 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.04, 154.45, 153.68, 151.03, 141.42, 136.86, 127.14, 127.12, 127.07, 125.50, 124.76, 121.94, 121.01, 111.43. IR (neat) v 3015, 2969, 2942, 2853, 1738, 1465, 1446, 1318, 1216, 931, 848, 760, 669. HRMS (ESI, m/z): calcd. for C₁₄H₉N₂OS(M+H)⁺: 253.0430, found: 253.0433.

2-(benzo[d]thiazol-2-yl)-5-methylbenzo[d]oxazole (3b)

White solid, m.p.: 197-198 °C, 38 mg, yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.1 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.65-7.54 (m, 3H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.28 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.06, 154.58, 153.72, 149.41, 141.66, 135.47, 128.31, 127.05, 126.98, 124.68, 121.90, 120.71, 110.75, 21.53. IR (neat) v 3015, 2969, 2855, 2379, 1428, 1365, 1228, 1120, 910, 807, 668. HRMS (ESI, m/z): calcd. for C₁₅H₁₀N₂NaOS(M+Na)⁺: 289.0406, found: 289.0404.

2-(benzo[d]thiazol-2-yl)-6-methylbenzo[d]oxazole (3c)

White solid, m.p.: 185-186 °C, 40 mg, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.1 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.65-7.54 (m, 3H), 7.51 (t, J = 7.5 Hz, 1H), 7.28 (s, 1H), 2.50 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 156.55, 154.64, 153.64, 151.32, 139.26, 137.93, 135.74,

127.06, 126.96, 126.91, 124.64, 121.89, 120.30, 111.38, 21.99. IR (neat) v 3022, 2967, 2851, 2375, 1615, 1455, 1373, 1313, 1228, 1017, 756, 728, 699. HRMS (ESI, m/z): calcd. for $C_{15}H_{10}N_2NaOS(M+Na)^+$: 289.0406, found:289.0405.

2-(benzo[d]thiazol-2-yl)-5-methoxybenzo[d]oxazole (3d)

White solid, m.p.: 178-179 °C, 44 mg, yield: 78%. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.59 (t, *J* = 8.7 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.31 (d, *J* = 2.3 Hz, 1H), 7.08 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.03, 157.63, 154.46, 153.65, 145.70, 142.27, 135.77, 127.09, 127.01, 124.69, 121.90, 116.32, 111.60, 103.08, 55.95. IR (neat) v 3079, 3004, 2922, 2951, 1484, 1426, 1275, 1150, 933, 812, 715. HRMS (ESI, m/z): calcd. for C₁₅H₁₀N₂NaO₂S(M+Na)⁺: 305.0355, found: 305.0353.

2-(benzo[d]thiazol-2-yl)-5-chlorobenzo[d]oxazole (3e)

White solid, m.p.: 195-196 °C, 35 mg, yield: 62%. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.85 (s, 1H), 7.62 (t, J = 8.4 Hz, 2H), 7.57 (d, J = 7.7 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.20, 153.83, 153.59, 149.53, 142.43, 135.89, 131.10, 127.44, 127.37, 127.30, 124.87, 122.00, 120.85, 112.19. IR (neat) v 2969, 2375, 2014, 1961, 1743, 1646, 1507, 1216, 1081, 736, 668, 591. HRMS (ESI, m/z): calcd. for C₁₄H₈ClN₂OS(M+H)⁺: 287.0040, found: 287.0041.

2-(benzo[d]thiazol-2-yl)-5-phenylbenzo[d]oxazole (3f)

White solid, m.p.: 195-196 °C, 45 mg, yield: 69%. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 7.9 Hz, 1H), 8.14-7.98 (m, 2H), 7.75 (dd, J = 18.9, 8.1 Hz, 2H), 7.66 (d, J = 7.1 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.51 (t, J = 6.9 Hz, 2H), 7.43 (d, J = 6.5 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 157.59, 154.36, 153.67, 150.52, 142.04, 140.59, 139.49, 135.86, 128.97, 127.57, 127.50, 127.20, 127.18, 126.79, 124.80, 121.97, 119.28, 111.44. IR (neat) v 3015, 2969, 2851, 2377, 1738, 1365, 1216, 1018, 816, 699, 668, 587. HRMS (ESI, m/z): calcd. for C₂₀H₁₂N₂NaOS(M+Na)⁺: 351.0563, found: 351.0561.

2-(benzo[d]thiazol-2-yl)-5-(tert-butyl)benzo[d]oxazole (3g)

White solid, m.p.: 156-157 °C, 46 mg, yield: 74%. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.1 Hz, 1H), 8.00 (t, J = 8.5 Hz, 1H), 7.90 (d, J = 1.4 Hz, 1H), 7.66-7.58 (m, 2H), 7.58-7.51 (m, 2H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.14, 154.67, 153.67, 149.20, 149.06, 141.36,

135.80, 127.09, 127.01, 125.07, 124.69, 121.91, 117.30, 110.57, 35.06, 31.70. IR (neat) v 2922, 2846, 2322, 1922, 1646, 1456, 1216, 1076, 668, 589, 526, 469. HRMS (ESI, m/z): calcd. For $C_{18}H_{16}N_2NaOS(M+Na)^+$: 331.0876, found: 331.0877.

2-(5-chlorobenzo[d]thiazol-2-yl)benzo[d]oxazole (3h)

White solid, m.p.: 211-212 °C, 41 mg, yield: 72%. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 1.3 Hz, 1H), 7.88 (dd, J = 16.7, 8.1 Hz, 2H), 7.70 (d, J = 7.9 Hz, 1H), 7.54-7.40 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.58, 156.21, 154.42, 151.00, 141.31, 134.05, 133.31, 127.66, 127.31, 125.62, 124.30, 122.64, 121.09, 111.46. IR (neat) v 3022, 2969, 2377, 1507, 1365, 1216, 910, 802, 737, 668, 517. HRMS (ESI, m/z): calcd. For C₁₄H₈ClN₂OS(M+H)⁺: 287.0040, found: 287.0037.

2-(6-methoxybenzo[d]thiazol-2-yl)benzo[d]oxazole (3i)

White solid, m.p.: 217-218 °C, 38 mg, yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.1 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.65-7.54 (m, 3H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.28 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.33, 157.20, 151.67, 150.93, 148.29, 141.46, 137.65, 126.79, 125.39, 125.34, 120.81, 117.32, 111.33, 103.67, 55.89. IR (neat) v 3015, 2969, 2944, 1738, 1434, 1365, 1228, 1216, 1091, 910, 787, 668. HRMS (ESI, m/z): calcd. for C₁₅H₁₁N₂O₂S(M+H)⁺: 283.0536, found: 283.0535.

5-methoxy-2-(6-methoxybenzo[d]thiazol-2-yl)benzo[d]oxazole (3j)

White solid, m.p.: 212-213 °C, 45 mg, yield: 72%. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 9.0 Hz, 1H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.42 (d, *J* = 2.3 Hz, 1H), 7.30 (d, *J* = 2.3 Hz, 1H), 7.19 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.06 (dd, *J* = 8.9, 2.4 Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.25, 157.97, 157.81, 151.69, 148.29, 145.63, 142.32, 137.59, 125.27, 117.24, 115.91, 111.49, 103.66, 103.05, 55.96, 55.87. IR (neat) v 2936, 2859, 2373, 1738, 1569, 1476, 1365, 1081, 826, 668, 527.HRMS (ESI, m/z): calcd. for C₁₆H₁₃N₂O₃S⁺(M+H)⁺: 313.0641, found: 313.0640.

2-(6-methoxybenzo[d]thiazol-2-yl)-6-methylbenzo[d]oxazole (3k)

White solid, m.p.: 217-218 °C, 38 mg, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.8 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 25.5 Hz, 2H), 7.26 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 7.0 Hz, 1H), 3.95 (s, 3H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.23, 137.64, 126.78, 125.26, 120.18, 117.20, 111.40, 103.76, 55.89, 21.99. IR (neat) v 3026, 2922, 2373, 1567, 1481,

1373, 1228, 1022, 830, 668, 518. HRMS (ESI, m/z): calcd. For $C_{16}H_{13}N_2O_2S(M+H)^+$: 297.0692, found: 297.0691.

5-(tert-butyl)-2-(5-chlorobenzo[d]thiazol-2-yl)benzo[d]oxazole (3l)

Light yellow solid, m.p.: 230-231 °C, 35 mg, yield: 51%. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.95-7.89 (m, 2H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.58 (d, *J* = 8.7 Hz, 1H), 7.51 (d, *J* = 8.6 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.70, 156.46, 154.46, 149.38, 149.08, 141.28, 134.02, 133.28, 127.61, 125.39, 124.27, 122.66, 117.37, 110.64, 35.09, 31.69. IR (neat) v 2973, 2926, 2379, 1743, 1456, 1334, 1216, 1022, 830, 718, 668, 518. HRMS (ESI, m/z): calcd. For C₁₈H₁₅ClN₂NaOS(M+Na)⁺: 365.0486, found: 365.0478.

5-(tert-butyl)-2-(6-methoxybenzo[d]thiazol-2-yl)benzo[d]oxazole (3m)

White solid, m.p.: 153-154 °C, 51 mg, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 9.0 Hz, 1H), 7.86 (d, J = 1.5 Hz, 1H), 7.59 (d, J = 8.7 Hz, 1H), 7.52 (dd, J = 8.7, 1.8 Hz, 1H), 7.39 (d, J = 2.3 Hz, 1H), 7.16 (dd, J = 9.0, 2.5 Hz, 1H), 3.90 (s, 3H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 159.19, 157.25, 151.83, 149.02, 148.96, 148.24, 141.36, 137.56, 125.23, 124.74, 117.21, 117.11, 110.45, 103.58, 55.84, 35.03, 31.70. IR (neat) v 2944, 2865, 2824, 1508, 1456, 1260, 1091, 930, 820, 668, 610, 516. HRMS (ESI, m/z): calcd. For C₁₉H₁₈N₂NaO₂S(M+Na)⁺: 361.0981, found: 361.0984.

2-(6-methoxybenzo[d]thiazol-2-yl)-5-methylbenzo[d]oxazole (3n)

White solid, m.p.: 210-211 °C, 44 mg, yield: 73%. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 9.0 Hz, 1H), 7.62 (s, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.41 (d, *J* = 2.3 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 7.18 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.92 (s, 3H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.23, 157.22, 151.80, 149.18, 148.26, 141.65, 137.57, 135.36, 128.02, 125.26, 120.55, 117.23, 110.65, 103.63, 55.86, 21.55. IR (neat) v 2965, 2920, 2848, 1478, 1373, 1264, 1079, 802, 668, 592, 443. HRMS (ESI, m/z): calcd. for C₁₆H₁₂N₂NaO₂S(M+Na)⁺: 319.0512, found: 319.0514.

5-chloro-2-(6-methoxybenzo[d]thiazol-2-yl)benzo[d]oxazole (30)

White solid, m.p.: 209-210 °C, 40 mg, yield: 62%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 9.0 Hz, 1H), 7.84 (d, *J* = 1.9 Hz, 1H), 7.62 (d, *J* = 8.7 Hz, 1H), 7.45 (dd, *J* = 6.8, 2.1 Hz, 2H), 7.22 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.52, 158.40, 151.00, 149.49, 148.27, 142.54, 137.80, 130.98, 127.11, 125.48, 120.68, 117.55, 112.06, 103.63, 55.91. IR (neat) v 3022, 2924, 2846, 2371, 1507, 1472, 1456, 1373, 1200, 1079, 875, 592. HRMS (ESI, m/z): calcd. for C₁₅H₁₀ClN₂O₂S(M+H)⁺: 317.0146, found: 317.0146.

5-(tert-butyl)-2,2'-bibenzo[d]oxazole (3p)

White solid, m.p.: 197-198 °C, 39 mg, yield: 66%.¹H NMR (400 MHz, CDCl₃) δ 7.95-7.87 (m, 2H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.63-7.56 (m, 2H), 7.52-7.43 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.91, 150.96, 149.46, 149.04, 141.18, 141.15, 127.39, 125.67, 125.59, 121.43, 117.67, 111.43, 110.60, 35.06, 31.67. IR (neat) v 2969, 2932, 2855, 2371, 1529, 1437, 1355, 1216, 1116, 668, 527. HRMS (ESI, m/z): calcd. for C₁₈H₁₆N₂NaO₂(M+Na)⁺: 315.1104, found: 315.1105.

5-(tert-butyl)-5'-methyl-2,2'-bibenzo[d]oxazole (3q)

White solid, m.p.: 172-173 °C, 44 mg, yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 1.4 Hz, 1H), 7.68 (s, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.60-7.56 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 2.52 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.03, 149.40, 149.24, 148.99, 141.37, 141.16, 135.74, 128.71, 125.49, 121.08, 117.63, 110.78, 110.57, 35.06, 31.68, 21.54. IR (neat) v 2969, 1738, 1364, 1228, 1216, 1102, 867, 824, 761, 672, 527. HRMS (ESI, m/z): calcd. for C₁₉H₁₈N₂NaO₂(M+Na)⁺: 329.1260, found: 329.1264.

5,6'-dimethyl-2,2'-bibenzo[d]oxazole (3r)

White solid, m.p.: 188-189 °C, 37 mg, yield: 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.66 (s, 1H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.47 (s, 1H), 7.30 (s, 1H), 7.25 (s, 1H), 2.53 (s, 3H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.01, 151.46, 151.26, 149.21, 141.36, 139.04, 138.33, 135.71, 128.65, 127.12, 121.04, 120.72, 111.35, 110.73, 21.98, 21.51. IR (neat) v 2969, 2946, 2133, 1739, 1435, 1365, 1228, 1216, 899, 538, 527, 515. HRMS (ESI, m/z): calcd. for C₁₆H₁₂N₂NaO₂(M+Na)⁺: 287.0791, found: 287.0793.

6-methoxy-2,2'-bibenzo[d]thiazole (3s)

White solid, m.p.: 220-221 °C, 43 mg, yield: 71%. (known compound²) ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.2 Hz, 1H), 8.05 (d, *J* = 9.0 Hz, 1H), 7.99 (d, *J* = 7.9 Hz, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.42 (d, *J* = 2.3 Hz, 1H), 7.18 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.67, 158.93, 158.83, 153.55, 148.16, 137.53, 135.61, 126.74, 126.39, 124.68, 123.87, 121.98, 116.83, 103.90, 55.86. HRMS (ESI, m/z): calcd. IR (neat) v 3015, 2969, 2942, 2848, 1434, 1365, 1228, 1216, 1091, 895, 754. for C₂₀H₁₂N₂NaOS(M+H)⁺: 299.0307, found: 299.0306.

2-(5-phenyloxazol-2-yl)benzo[d]oxazole (3t)

White solid, m.p.: 160-161 °C, 32 mg, yield: 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.89 (m, 1H), 7.88-7.82 (m, 2H), 7.70 (dd, J = 7.1, 1.7 Hz, 1H), 7.66 (s, 1H), 7.53-7.49 (m, 2H), 7.49-7.45 (m, 2H), 7.44 (dd, J = 5.4, 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.05, 151.75, 150.64, 150.51, 141.22, 129.67, 129.10, 126.89, 126.74, 125.51, 125.00, 124.38, 121.13, 111.29. IR (neat) v 3015, 2969, 1738, 1561, 1447, 1365, 1228, 909, 761, 686, 257. HRMS (ESI, m/z): calcd. for C₁₆H₁₀N₂O₂(M+Na)⁺: 285.0634, found: 285.0636.

5-methyl-2-(5-phenyloxazol-2-yl)benzo[d]oxazole (3u)

White solid, m.p.: 164-165 °C, 30 mg, yield: 53%. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 2H), 7.66 (s, 1H), 7.62 (s, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.41 (d, J = 7.1 Hz, 1H), 7.28 (d, J = 2.4 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.88, 151.77, 150.63, 148.90, 141.40, 135.48, 129.58, 129.06, 128.13, 126.75, 124.95, 124.31, 120.83, 110.61, 21.55. IR (neat) v 2969, 2946, 2125, 1739, 1434, 1365, 1228, 1091, 899, 538, 515. HRMS (ESI, m/z): calcd. For C₁₇H₁₅N₂O₂⁺(M-H)⁺: 277.0972, found: 277.0969.

5-(tert-butyl)-2-(5-phenyloxazol-2-yl)benzo[d]oxazole (3v)

White solid, m.p.: 164-165 °C, 40 mg, yield: 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 2H), 7.63 (s, 1H), 7.59 (d, *J* = 8.7 Hz, 1H), 7.53 (d, *J* = 8.7 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.89, 151.81, 150.64, 149.14, 148.69, 141.18, 129.56, 129.06, 126.78, 124.93, 124.84, 124.30, 117.40,

110.39, 35.03, 31.70. IR (neat) v 2946, 2133, 1739, 1435, 1216, 1092, 899, 792, 760, 685, 674. HRMS (ESI, m/z): calcd. For C₂₀H₁₈N₂NaO₂(M+Na)⁺: 341.1260, found: 341.1261. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 2H), 7.63 (s, 1H), 7.56 (dd, *J* = 20.9, 8.7 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 1.42 (s, 9H).

2-(4,5-dimethylthiazol-2-yl)benzo[d]oxazole (3w)

White solid, m.p.: 165-166 °C, 30 mg, yield: 64%. (known compound³) ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.77 (m, 1H), 7.63 (dd, J = 6.1, 3.0 Hz, 1H), 7.43-7.37 (m, 2H), 2.48 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.21, 151.48, 150.59, 149.47, 141.50, 131.97, 126.10, 125.10, 120.42, 111.12, 14.91, 11.73. IR (neat) v 3457, 3015, 2969, 1738, 1436, 1365, 1228, 1216, 1091, 895, 736, 527. HRMS (ESI, m/z): calcd. for C₁₂H₁₀N₂NaOS(M+Na)⁺: 253.0406, found: 253.0405.

2-(4,5-dimethylthiazol-2-yl)-5-methylbenzo[d]oxazole (3x)

White solid, m.p.: 161-162 °C, 32 mg, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.20 (dd, *J* = 8.3, 1.0 Hz, 1H), 2.48 (s, 3H), 2.47 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.27, 151.36, 149.62, 148.84, 141.69, 135.01, 131.71, 127.28, 120.22, 110.44, 21.50, 14.89, 11.69. IR (neat) v 2969, 2922, 2857, 1738, 1425, 1365, 1216, 1091, 910, 806, 716, 665. HRMS (ESI, m/z): calcd. for C₁₃H₁₂N₂NaOS(M+Na)⁺: 267.0563, found: 267.0565.

5-(tert-butyl)-2-(4,5-dimethylthiazol-2-yl)benzo[d]oxazole (3y)

White solid, m.p.:147-148 °C, 39 mg, yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 1.5 Hz, 1H), 7.53 (d, J = 8.6 Hz, 1H), 7.46 (dd, J = 8.7, 1.8 Hz, 1H), 2.47 (s, 6H), 1.39 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 157.30, 151.31, 149.69, 148.70, 148.61, 141.40, 131.72, 123.97, 116.80, 110.24, 34.96, 31.71, 14.91, 11.70. IR (neat) v 2969, 2863, 1891, 1440, 1228, 1128, 1026, 911, 820, 651, 527. HRMS (ESI, m/z): calcd. for C₁₆H₁₈N₂NaOS(M+Na)⁺: 309.1032, found: 309.1034.

2-(4,5-dimethylthiazol-2-yl)benzo[d]thiazole (3z)

White solid, m.p.:197-198 °C, 34 mg, yield: 68%. (known compound^{4,5}) ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.1 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.52-7.48 (m, 1H), 7.44-7.38 (m, 1H), 2.45 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.84, 156.39, 153.56, 150.61, 135.12, 130.95, 126.50, 125.80, 123.40, 121.85, 14.89, 11.83. IR (neat) v 2969, 2375, 1553, 1415, 1228, 1110, 1010, 828, 729, 685, 527. HRMS (ESI, m/z): calcd. for C₁₂H₁₁N₂S₂(M+H)⁺: 247.0358, found: 247.0359.

2-(4,5-dimethylthiazol-2-yl)-6-methoxybenzo[d]thiazole (3a')

White solid, m.p.: 171-172 °C, 41 mg, yield: 74%. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 9.0 Hz, 1H), 7.36 (d, J = 2.2 Hz, 1H), 7.10 (dd, J = 9.0, 2.4 Hz, 1H), 3.90 (s, 3H), 2.45 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.34, 158.28, 156.61, 150.30, 148.11, 136.68, 130.19, 123.96, 116.16, 104.02, 55.81, 14.86, 11.78. IR (neat) v 2922, 2851, 1515, 1429, 1268, 1120, 1081, 924, 830, 806, 682, 592. HRMS (ESI, m/z): calcd. for C₁₃H₁₃N₂OS₂(M+H)⁺: 277.0464, found: 277.0464.

2-(6-methoxybenzo[d]thiazol-2-yl)-5-phenyloxazole (3b')

White solid, m.p.: 176-177 °C, 32 mg, yield: 51%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 9.0 Hz, 1H), 7.90-7.81 (m, 2H), 7.57 (s, 1H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.45-7.37 (m, 2H), 7.18 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.88, 155.84, 153.19, 151.78, 148.32, 137.03, 129.30, 129.01, 127.07, 124.90, 124.08, 116.82, 103.77, 77.38, 77.06, 76.75, 55.87. IR (neat) v 3015, 2969, 2942, 1738, 1365, 1228, 1091, 906, 832, 684, 539, 516. HRMS (ESI, m/z): calcd. for C₁₇H₁₂N₂O₂S(M+Na)⁺: 331.0512, found: 331.0515.

2-(4,5-dimethylthiazol-2-yl)-5-phenyloxazole (3c')

White solid, m.p.: 104-105 °C, 28 mg, yield: 54%. (known compound²) ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.73 (m, 2H), 7.46 (dd, *J* = 5.7, 4.6 Hz, 2H), 7.43 (d, *J* = 6.5 Hz, 1H), 7.41-7.32 (m, 1H), 2.46 (d, *J* = 1.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.97, 152.14, 150.72, 149.81, 130.0, 128.88, 127.29, 124.9, 124.67, 123.63, 14.90, 11.58. IR (neat) v 2969, 2924, 2853, 1588, 1448, 1423, 1365, 1228, 1204, 1036, 947, 761, 689. HRMS (ESI, m/z): calcd. for C₁₄H₁₂N₂OS(M+Na)⁺: 279.0563, found: 279.0562.

2-(4-methylthiazol-2-yl)-5-phenyloxazole (3d')

White solid, m.p.: 106-107 °C, 30 mg, yield: 61%. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 5.3, 3.4 Hz, 2H), 7.48 (s, 1H), 7.47-7.41 (m, 2H), 7.36 (m, 1H), 7.06 (d, J = 0.6 Hz, 1H), 2.58 (d, J = 0.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.81, 154.95, 153.88, 152.42, 129.05, 128.92, 127.17, 124.73, 123.72, 116.30, 17.23. IR (neat) v 2922, 2854, 1679, 1486, 1421, 1300, 1041, 909, 720, 690, 546, 502. HRMS (ESI, m/z): calcd. for C₁₃H₁₀N₂OS(M+Na)⁺: 265.0406, found: 265.0407.

2.2 Aerobic and Anaerobic Control Experiments

Table S1. Aerobic and Anaerobic Control Experiments

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), [Co] (0.04 mmol), [Cu] (0.04 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), O₂, 130 °C, 18 h. ^bReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), [Co] (0.04 mmol), [Cu] (0.04 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), Ar, 130 °C, 18 h. ^cCrude ¹H NMR yields of desired product **3a** determined by using dibromomethane as an internal standard. ^dCrude ¹H NMR yields of self-coupling product **4a** 2,2'-bibenzothiazole determined by using dibromomethane as an internal standard. ^aCrude ¹H NMR yields of self-coupling product **5a** 2,2'-bibenzoxazole determined by using dibromomethane as an internal standard and based on **1a**.

2.3 Radical Trapping Experiment

A 35 mL oven-dried pressure tube was charged with **1a** benzothiazole (27.0 mg, 0.2 mmol), **2a** benzo[d]oxazole (35.8 mg, 0.3 mmol), Cu(OAc)₂ •H₂O (8 mg, 0.04 mmol), Co(NO₃)₂ •6H₂O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), TEMPO (1.0 equiv./ 2.0 equiv./ 3.0 equiv.) and 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL). The tube was sealed and stirred vigorously at 130 °C for 18 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc,

filtered through a celite pad and concentrated under reduced pressure. The crude product was analyzed by ¹H NMR in CDCl₃ using dibromomethane as internal standard.

Scheme S1. Radical Trapping Experiment

2.4 Cobalt-Copper Cocatalyzed Self-coupling and Cross-coupling Control Experiments

Scheme S2. Cobalt-Copper Cocatalyzed Self-coupling and Cross-coupling Control Experiments

^a Reaction Conditions: **1a** (0.4 mmol), Cu(OAc)₂ •H₂O (8 mg, 0.04 mmol), Co(NO₃)₂ •6H₂O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), air, 130 °C, 18 h. ^bReaction Conditions: 2a (0.4 mmol), Cu(OAc)₂ • H₂O (8 mg, 0.04 mmol), Co(NO₃)₂ • 6H₂O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), air, 130 °C, 18 h. Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), Cu(OAc)₂ • H₂O (8 mg, 0.04 mmol), Co(NO₃)₂ • 6H₂O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), air, 130 °C, 18 h. ^dCrude ¹H NMR yields determined by using dibromomethane as an internal standard. ^e Reaction Conditions: 2b (0.4 mmol), Cu(OAc)₂ • H₂O (8 mg, 0.04 mmol), Co(NO₃)₂ • 6H₂O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), air, 130 °C, 18 h. ^fReaction Conditions: 21 (0.4 mmol), Cu(OAc)₂ • H₂O (8 mg, 0.04 mmol), Co(NO₃)₂ • 6H₂O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), air, 130 °C, 18 h. Reaction conditions: 2b (0.2 mmol), 2l (0.2 mmol), Cu(OAc)2 •H2O (8 mg, 0.04 mmol), Co(NO3)2 •6H2O (11.7 mg, 0.04 mmol), CH₃COONa (16.4 mg, 0.2 mmol), 1-fluoro-2-(trifluoromethyl)benzene (0.8 mL), air, 130 °C, 18 h.

When the two reactants 1a and 2a were added in a ratio of 1/1, the cross-coupling product 3a

was achieved with the yield of 54%, and the yields of the self-coupling product were 8% and 16%, respectively (GC-MS data can also initially show that the cross-coupling product **3a** is the major product). When only one of the reactants **1a** or **2a** was added, self-coupling product was obtained with yields of 10% and 38%, respectively. It is shown that this reaction tends to inhibit the self-coupling reaction and preferentially generates a cross-coupling product under these Co-Cu co-catalyzed conditions. However, when **2b** 5-Me benzoxazole and **2l** 5-t-Bu benzoxazole were added in a ratio of 1/1, there were no cross-coupling reaction selectivity, suggesting that the cross-coupling selectivity of the reaction involved the difference in the substrates.

3. References and Notes

(1) Derridj, F.; Roger, J.; Geneste, F.; Djebbar, S.; Doucet, H. J. Organomet. Chem. 2009, 455.

- (2) Li, Y.; Qian, F.; Wang, M.; Lu, H.; Li, G. Org. Lett., 2017, 19, 5589.
- (3) Dong, J.; Huang, Y.; Qin, X.; Cheng, Y.; Hao, J.; Wan, D.; Li, W.; Liu, X.; You, J. *Chem. Eur. J.* **2012**, *18*, 6158.
- (4) Han, W.; Mayer, Peter.; Ofial, A. R. Angew. Chem., Int. Ed. 2011, 50, 2178.
- (5) Fan, S.; Chen, Z.; Zhang, X. Org. Lett. 2012, 14, 4950.

4. ¹H and ¹³C NMR Spectra

3a

100 90 f1 (ppm)

3c

3d

3e

3h

3i

3j

3k

31

3n

3p

3q

3r

3s

3t

7, 322 7, 322 7, 326 868 7, 7, 350 868 7, 7, 558 868 7, 7, 558 7, 7, 558 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 868 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 869 7, 7, 758 7, 758 869 7, 7, 758 7, 758 869 7, 7587 7, 7587 7, 7587 7, 7587 7, 7587 7, 7587 7, 7587 7, 7587 7, 75870

3x

3z

S N Me 3z

3a'

3b'

MeO S43 N N N 3b'

3c'

 $<^{2.579}_{2.577}$

