Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Reaction Engineering Implications of Cellulose Crystallinity and Water-Promoted Recrystallization

Maksim Tyufekchiev^a, Alex Kolodziejczak^a, Pu Duan^c, Marcus Foston^b, Klaus Schmidt-Rohr^c, Michael T. Timko^a

^a Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA

^b Department of Energy, Environment and Chemical Engineering, Washington University in St. Louis, One

Brookings Drive, St. Louis, MO 63130, USA

^c Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA

Figure S1. Mass balance closure for acid (red squares) and hot liquid water (blue diamonds) treated ball-milled cellulose samples.

Figure S2. X-ray diffractograms of a) MCC-BM50, b) MCC-BM50 washed with acetone and dried at 65 °C, c) MCC-BM50 washed with water and dried.

Figure S3. X-ray diffractograms of progressively ball-milled cellulose samples after liquid hot water treatment at 150 °C for 1 hour: a) Avicel-PH101, b) MCC-BM10-HLW, c) MCC-BM20-LHW, d) MCC-BM30- HLW, e) MCC-BM40-HLW, f) MCC-BM50-HLW.

Figure S4. X-ray diffractograms of progressively ball-milled cellulose samples after sample preparation simulated conditions: a) Avicel-PH101, b) MCC-BM10-SP, c) MCC-BM20-SP, d) MCC-BM30-SP, e) MCC-BM40-SP, f) MCC-BM50-SP.

Figure S5. Raman spectra of progressively ball-milled cellulose samples: a) Avicel-PH101, b) MCC-BM10, c) MCC-BM20, d) MCC-BM30, e) MCC-BM40, f) MCC-BM50.

Figure S6. Raman spectra of progressively ball-milled cellulose samples after 0.1 M HCl acid treatment at 150 °C for 1 hour: a) Avicel-PH101, b) MCC-BM10-AC, c) MCC-BM20-AC d) MCC-BM30-AC, e) MCC-BM40-AC, f) MCC-BM50-AC.

Figure S7. Raman spectra of progressively ball-milled cellulose samples after liquid hot water treatment at 150 °C for 1 hour: a) Avicel-PH101, b) MCC-BM10- HLW, c) MCC-BM20- HLW, d) MCC-BM30- HLW, e) MCC-BM40- HLW, f) MCC-BM50- HLW.

Figure S8. Raman spectra of progressively ball-milled cellulose samples after samples after sample preparation simulated conditions: a) Avicel-PH101, b) MCC-BM10-SP, c) MCC-BM20-SP, d) MCC-BM30-SP, e) MCC-BM40-SP, f) MCC-BM50-SP.

Figure S9. Expanded region of the X-ray diffractograms of progressively ball-milled cellulose samples after sample preparation simulated conditions: a) Avicel-PH101, b) MCC-BM10-SP, c) MCC-BM20-SP, d) MCC-BM30-SP, e) MCC-BM40-SP, f) MCC-BM50-SP. The peak at approximately 12.2° is identified as cellulose II.

Ball milling time (min)

Figure S10. Full-width-halfmax (FHWM) of 200 diffraction peak plotted versus ball milling time for ball-milled cellulose samples recrystallized by sample preparation and heat up treatment.

Figure S11. X-ray diffractograms of selected samples: a) MCC-BM50 and b) MCC-B50 after treatment in ethanol (130 °C, 1 hour).

Figure S12. X-ray diffractograms after ethanolysis of selected cellulose samples: a) MCC, b) MCC-BM50-HLW, and c) MCC-BM50.