Electronic Supplementary Information

Poly-quasi-eutectic solvents (PQESs): versatile solvent for dissolving metal oxides

Jingyun Jiang,^{a,b} Xiyue Bai,^a Xinhui Zhao,^a Wenjun Chen,^a Tingting Yu,^a Yan Li,^c and Tiancheng Mu^{*a}

^aDepartment of Chemistry, Renmin University of China, Beijing 100872, China.
^bSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.
^bCollege of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China

*Corresponding author. Tel: 86-10-62514925, Email: <u>tcmu@ruc.edu.cn</u>

Contents

Table S1 The onset melting temperature (T_m) of PQESs. ^a means no data.

Table S2 Temperature dependent viscosity of PQESs. ^a means no data.

Table S3 Temperature dependent conductivity of PQESs. ^a means no data.

Table S4 Energy for activation of viscous flow E_{η} and conductivity E_{Λ} obtained by fitting the data in Figure S3 to equation 1 and those in Figure S4 to equation 2.

Table S5 Comparison of solubility of 7 metal oxides in our PEG-based PQESs and other reported ionic liquids. $a[P_{66614}][Cl]$: trihexyl(tetradecyl)phosphonium chloride; $b[C_2mim][Cl]$: 1-ethyl-3-methylimidazolium chloride; $c[C_2mim][OAc]$: 1-ethyl-3-methylimidazolium acetate; -d means no data.

Table S6 The solvatochromic parameters of PEG-based PQESs.

Table S7 The adjusted R^2 of solubility of Fe₂O₃, CoO, NiO, CuO, ZnO, Al₂O₃, and ZnO vs α , T_m , viscosity, and conductivity values of different PEG-based PQESs.

Table S8 Symmetric vibrations($v_s(COO^-)$), antisymmetric stretching vibrations, ($v_{as}(COO^-)$), and ditance between them of carboxylic acid-based PQESs after dissolving metal oxides.

Table S9 pK_a values of the selected carboxyl acid-based HBDs.

Fig. S1 Structures of the selected 11 hydrogen bonding donors (HBDs): 2-fluoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid, acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea.

Fig. S2 FTIR spectra of the P123-based PQESs: (a) P123-based PQESs composed by amides-based HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) P123-based PQESs composed by amides-based HBDs including 2-fluoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S3 Plot of In viscosity vs. reciprocal of temperature for a variety of PQESs: (a) amides-based HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) carboxylic acid-based HBDs including 2-fluoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S4 Plot of In conductivity vs. reciprocal of temperature for a variety of PQESs: (a) amides-based HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) carboxylic acid-based HBDs including 2-fluoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S5 Plot of conductivity vs. reciprocal of viscosity for a variety of PQESs: (a) amides-based HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) carboxylic acid-based HBDs including

2-fluoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S6 The thermal stability of the prepared PEG-based PQESs.

Fig. S7 The dissoving of Fe₂O₃ in the synthesized PQESs: (a) Photographs of PQESs after dissolving Fe₂O₃; (b) solubility of Fe₂O₃ in different PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S8 The dissoving of CoO in the synthesized PQESs: (a) Photographs of PQESs after dissolving CoO; (b) solubility of CoO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S9 The dissoving of NiO in the synthesized PQESs: (a) Photographs of PQESs after dissolving NiO; (b) solubility of NiO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S10 The dissoving of CuO in the synthesized PQESs: (a) Photographs of PQESs after dissolving CuO; (b) solubility of CuO in different PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S11 The dissoving of ZnO in the synthesized PQESs: (a) Photographs of PQESs after dissolving ZnO; (b) solubility of ZnO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S12 The dissoving of Al₂O₃ in the synthesized PQESs: (a) Photographs of PQESs after dissolving Al₂O₃; (b) solubility of Al₂O₃ in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S13 The dissoving of CaO in the synthesized PQESs: (a) Photographs of PQESs after dissolving CaO; (b) solubility of CaO in different PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S14 Relationship of metal oxides (Fe₂**O**₃, **CoO**, **NiO**, **CuO**, **ZnO**, **Al**₂**O**₃, **and CaO**) **solubility vs α value for PEG-based PQESs.** The lines are the linear fitting results of the solubility vs α value.

Fig. S15 Relationship of metal oxides (Fe₂O₃, CoO, NiO, CuO, ZnO, Al₂O₃, and CaO) solubility vs T_m (a), viscosity (b), and conductivity (c) values for PEG-based PQESs. The lines are the linear fitting results of the solubility vs T_m (a), viscosity (b), and conductivity (c) values.

Fig. 16 TEM images of ZnO dissolved in 2-furonic acid-PEG at low (a) and high (b) magnification.

Fig. S17 ¹H NMR spectra of before (black) and after (red) metal oxides dissolved in the synthesized PQESs: (a) CaO in 2-furoic acid-PEG and (b) CuO in thiourea-PEG. **Reference**

Table S1 The onset melting temperature (T_m) of PQESs. ^a means no data. ^b means the data was derived from reference 1.

PQESs			T _m (°C))	
HBDs	PEG 200	PEG 1000	P123 5800	PPG-NH₂ 250	DMPEG D-230
2-furoic acid	-71.8	29.8	27.2	-93.0	-70.2
oxalic acid	-66.9	30.4	26.8	-85.8	-67.2
malonic acid	-69.2	29.2	28.6	-89.9	_u a
succinic acid	-73.2	29	27.5	-90.1	-
glutaric acid	-76.7	27.8	26.9	-90.4	
acetamide	-78.6	31.2	26.9	-95.2	-73.3
urea	-64.2	32.4	29.6	-94.3	-57.8
N-methylurea	-70.8	31.2	27.6	-96.2	-73.4
thiourea	-65.1 ^b	29.6	27.6	-89.7	-64.0
N-methylthiourea	-67.6	29.4	26.5	-91.2	-62.5
N,N-dimethylthiourea	-75.6	29.3	25.7	-93.2	-59.8

PQESs				<i>η</i> (m	Pa∙s)				
HBDs	Temperature (K)								
	298.15	308.15	318.15	328.15	338.15	348.15	358.15	368.15	
2-furoic acid	87.3	48.8	30.0	19.8	13.8	10.3	7.74	5.99	
oxalic acid	123	86.2	50.7	32.9	22.3	15.9	11.8	_a	
malonic acid	118	65.1	39.1	25.3	17.4	12.7	9.69	7.87	
succinic acid	95.2	54.5	33.9	22.5	15.8	11.6	8.88	7.01	
glutaric acid	92.7	56.5	34.8	24.8	16.7	12.0	8.96	6.30	
acetamide	46.1	27.8	18.6	12.9	9.41	7.11	5.46	3.95	
urea	114	60.2	35.4	22.8	15.6	11.3	8.57	6.77	
N-methylurea	74.5	42.4	26.2	17.6	12.5	9.21	7.19	5.67	
thiourea	170	72.6	41.5	25.9	17.5	12.8	9.41	7.21	
N-methylthiourea	118	66.5	37.6	26.3	16.6	11.6	8.51	5.60	
N,N-dimethylthiourea	59.6	34.1	21.8	14.8	10.5	7.85	6.01	4.18	

Table S2 Temperature dependent viscosity of PQESs. ^a means no data.

PQESs				σ (μS	·cm⁻¹)				
HBDs	Temperature (K)								
	298.15	308.15	318.15	328.15	338.15	348.15	358.15	368.15	
2-furoic acid	4.21	5.59	7.70	10.1	13.0	15.7	18.1	21.1	
oxalic acid	5.44	7.95	10.4	13.4	16.6	20.0	_a	_ a	
malonic acid	1.21	1.57	2.01	2.66	3.40	4.36	5.16	5.97	
succinic acid	1.11	1.36	1.90	2.50	3.16	3.99	4.69	5.58	
glutaric acid	4.24	6.39	9.14	11.4	14.4	18.1	20.9	24.5	
acetamide	5.16	6.87	9.28	11.3	14.1	17.1	19.5	22.8	
urea	2.78	4.08	5.91	7.99	10.2	13.8	18.0	25.1	
N-methylurea	10.1	13.1	20.2	26.6	34.2	41.6	48.9	62.6	
thiourea	2.72	3.40	4.73	6.91	9.28	12.2	14.7	18.3	
N-methylthiourea	4.20	7.21	10.0	13.7	18.8	25.4	35.0	43.8	
N,N-dimethylthiourea	4.33	6.41	10.0	13.8	18.1	24.8	32.7	44	

Table S3 Temperature dependent conductivity of PQESs. ^a means no data.

Table S4 Energy for activation of viscous flow E_η and conductivity E_Λ obtained by fitting the data in Figure S3 to equation 1 and those in Figure S4 to equation 2.

PQESs	In <i>n</i> o	Εη	In σ₀	Εσ
HBDs		kJ∙mol ⁻¹		kJ∙mol⁻¹
2-furoic acid	-9.57±0.4	34.5±1.1	10.1±0.1	-21.6±0.5
oxalic acid	-9.21±0.2	34.8±0.7	10.7±0.2	-22.1±0.6
malonic acid	-9.32±0.3	34.5±2.0	10.3±0.3	-25.8±0.9
succinic acid	-9.20±0.4	33.8±1.1	9.00±0.1	-22.1±0.4
glutaric acid	-9.42±0.3	34.4±0.9	10.5±0.2	-22.2±0.6
acetamide	-8.85±0.3	31.2±0.8	9.40±0.1	-19.0±0.3
urea	-10.1±0.5	36.5±1.5	12.2±0.2	-27.8±0.3
methylurea	-9.24±0.4	33.3±1.2	11.8±0.2	-23.6±0.6
thiourea	-12.9±0.4	40.3±1.1	11.3±0.1	-25.8±0.4
N-methylthiourea	-10.9±0.3	38.9±1.0	13.5±0.1	-29.8±0.4
N,N-dimethylthiourea	-9.57±0.4	33.6±1.1	13.6±0.2	-30.1±0.4

Table S5 Comparison of solubility of 7 metal oxides in our PEG-based PQESs and otherreported ionic liquids. $a[P_{66614}][Cl]$: trihexyl(tetradecyl)phosphonium chloride; $b[C_2mim][Cl]$: 1-ethyl-3-methylimidazolium chloride; $c[C_2mim][OAc]$: 1-ethyl-3-methylimidazolium acetate; $-^d$ means no data.

PQESs	Solubility (ppm unless stated otherwise)							
HBDs	Fe ₂ O ₃	CoO	NiO	CuO	ZnO	Al ₂ O ₃	CaO	Reference
2-furoic acid	123	1995	143	818	18139	218	3170	our work
oxalic acid-PEG	1763	_d	_d	1.8	_d	324	155	our work
thiourea-PEG	_d	370	45.8	1303	181	261	1024	our work
ChCl-malonic acid	376	3626	151	14008	16217	_d	_d	[2]
ChCl-urea	49	-	325	470	8466	<1	6	[3]
^a [P ₆₆₆₁₄][CI]–HCI	647	993	996	1035	1041	_d	698	[4]
^b [C ₂ mim][Cl]	_d	_d	5 mg/g	64 mg/g	36 mg/g	_d	_d	[5]
²[C₂mim][OAc]	_d	_d	0.9 mg/g	2.3 mg/g	83 mg/g	_d	_d	[5]

PQESs	α	β	π*
2-furoic acid-PEG	2.9694	0.7584	0.9433
oxalic acid-PEG	3.4820	1.4406	0.8497
malonic acid-PEG	3.0940	1.1118	0.9053
succinic acid-PEG	2.7790	1.4080	0.9053
glutaric acid-PEG	2.8421	1.1685	0.8881
acetamide-PEG	2.5653	1.8427	0.9640
urea-PEG	2.6539	1.8552	1.0013
N-methylurea-PEG	2.5566	1.9783	0.9640
thiourea-PEG	2.6828	1.5976	1.0383
N-methylthiourea-PEG	2.7722	1.5757	1.0013
N,N-dimethylthiourea-PEG	2.7134	1.6989	0.9640

Table S6 The solvatochromic parameters of PEG-based PQESs.

Table S7 The adjusted R² of solubility of Fe₂O₃, CoO, NiO, CuO, ZnO, Al₂O₃, and ZnO vs α , *T_m*, viscosity, and conductivity values of different PEG-based PQESs.

Metal oxides in	Adjusted R ²						
PEG-based PQESs	α	Тт	Viscosity	Conductivity			
Fe ₂ O ₃	0.6268	0.3591	0.2789	0.0016			
CoO	0.4032	0.0013	0.1396	0.0219			
NiO	0.4379	0.1091	0.0001	0.0053			
CuO	0.6215	0.0062	0.0001	0.0024			
ZnO	0.0870	0.0303	0.0002	0.1678			
Al ₂ O ₃	0.1768	0.6837	0.4194	0.0022			
CaO	0.0193	0.0073	0.0194	0.0477			

Table	S8	Symmetric	vibrations($v_s(COO^-)$),	antisymmetric	stretching	vibrations,
(v _{as} (CC)O ⁻))	, and ditance	e between them of carb	oxylic acid-base	d PQESs afte	er dissolving
metal	oxid	es.				

Metal oxides dissolving in PQESs	v _{as} (COO⁻)	<i>v</i> ₅(COO ⁻)	<i>v_{as}</i> (COO ⁻)- <i>v_{as}</i> (COO ⁻)
	cm⁻¹	cm ⁻¹	cm ⁻¹
Fe ₂ O ₃ in oxalic acid-PEG	1743	1456	287
CoO in 2-furoic acid-PEG PQES	1713	1474	239
NiO in malonic acid-PEG PQES	1737	1459	278
ZnO in 2-furoic acid-PEG	1734	1477	257
Al_2O_3 in oxalic acid-PEG PQES	1740	1456	284
CaO in 2-furoic acid-PEG	1722	1477	245

Table S9 pK_a values of the selected carboxyl acid-based HBDs.

Carboxyl acid-based HBDs	рК _{а1}	рК а2
2-furoic acid	3.16	_a
oxalic acid	1.27	4.27
malonic acid	2.85	5.66
succinic acid	4.21	5.64
glutaric acid	3.77	6.08

Fig. S1 Structures of the selected 11 hydrogen bonding donors (HBDs): 2-furoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid, acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea.

Fig. S2 FTIR spectra of the P123-based PQESs: (a) P123-based PQESs composed by amides-based HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) P123-based PQESs composed by amides-based HBDs including 2-furoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S3 Plot of In viscosity vs. reciprocal of temperature for a variety of PQESs: (a) amides-based HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) carboxylic acid-based HBDs including 2-furoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S4 Plot of In conductivity vs. reciprocal of temperature for a variety of PQESs: (a) amides-based HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) carboxylic acid-based HBDs including 2-furoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S5 Plot of conductivity vs. reciprocal of viscosity for a variety of PQESs: (a) amidesbased HBDs including acetamide, urea, N-methylurea, thiourea, N-methylthiourea, and N,N-dimethylthiourea; (b) carboxylic acid-based HBDs including 2-furoic acid, oxalic acid, malonic acid, succinic acid, and glutaric acid.

Fig. S6 The thermal stability of the prepared PEG-based PQESs.

Fig. S7 The dissoving of Fe_2O_3 in the synthesized PQESs: (a) Photographs of PQESs after dissolving Fe_2O_3 ; (b) solubility of Fe_2O_3 in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S8 The dissoving of CoO in the synthesized PQESs: (a) Photographs of PQESs after dissolving CoO; (b) solubility of CoO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S9 The dissoving of NiO in the synthesized PQESs: (a) Photographs of PQESs after dissolving NiO; (b) solubility of NiO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S10 The dissoving of CuO in the synthesized PQESs: (a) Photographs of PQESs after dissolving CuO; (b) solubility of CuO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S11 The dissoving of ZnO in the synthesized PQESs: (a) Photographs of PQESs after dissolving ZnO; (b) solubility of ZnO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S12 The dissoving of Al₂**O**₃ **in the synthesized PQESs:** (a) Photographs of PQESs after dissolving Al₂O₃; (b) solubility of Al₂O₃ in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S13 The dissoving of CaO in the synthesized PQESs: (a) Photographs of PQESs after dissolving CaO; (b) solubility of CaO in differnet PQESs. The HBDs were were composed by acetamide (I), urea (II), N-methylurea (III), thiourea (IV), N-methylthiourea (V), and N,N-dimethylthiourea (VI), 2-furoic acid (VII), oxalic acid (VIII), malonic acid (IX), succinic acid (X), and glutaric acid (XI).

Fig. S14 Relationship of metal oxides (Fe₂O₃, CoO, NiO, CuO, ZnO, Al₂O₃, and CaO) solubility vs α value for PEG-based PQESs. The lines are the linear fitting results of the solubility vs α value.

Fig. S15 Relationship of metal oxides (Fe₂O₃, CoO, NiO, CuO, ZnO, Al₂O₃, and CaO) solubility vs T_m (a), viscosity (b), and conductivity (c) values for PEG-based PQESs. The lines are the linear fitting results of the solubility vs T_m (a), viscosity (b), and conductivity (c) values.

Fig. 16 TEM images of ZnO dissolved in 2-furonic acid-PEG at low (a) and high (b) magnification.

Fig. S17 ¹H NMR spectra of before (black) and after (red) metal oxides dissolved in the synthesized PQESs: (a) CaO in 2-furoic acid-PEG and (b) CuO in thiourea-PEG.

Reference

- 1. J. Jiang, C. Yan, X. Zhao, H. Luo, Z. Xue, T. Mu, Green Chem., 2017, 19, 3023-3031.
- 2. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and P. Shikotra, *Inorg. Chem.*, 2005, **44**, 6497-6499.
- 3. A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie and S. U. Obi, *J. Chem. Eng. Data*, 2006, **51**, 1280-1282.
- 4. S. Wellens, T. Vander Hoogerstraete, C. Möller, B. Thijs, J. Luyten and K. Binnemans, Hydrometallurgy, 2014, **144-145**, 27-33.
- 5. S. Wellens, N. R. Brooks, B. Thijs, L. V. Meervelt and K. Binnemans, Dalton Trans., 2014, 43, 3443-3452.