Sn-Al-USY in glucose valorization to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange.

Jose Iglesias,*a Jovita Moreno, Gabriel Morales, Juan A. Melero, Pablo Juárez, Manuel López-Granados, ^b Rafael Mariscal, ^b Irene Martínez-Salazar^b

^a Chemical & Environmental Engineering Group. Universidad Rey Juan Carlos. Tulipan s/n, 28933. Madrid, Spain.

^b Energy and Sustainable Chemistry Group (EQS), Institute of Catalysis and Petrochemistry, (CSIC), Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain.

Electronic Supporting Information

Figure ESI-1. XRD patterns and crystallinity (in brackets) recorded for USY samples (left) dealuminated with different concentrations of HNO_3 and metalated with constant loading of $SnCl_4$ in iPrOH, and (right) dealuminated with 10M HNO_3 and metalated with different loadings of $SnCl_4$ in CH_2Cl_2 . Cristallinity has been calculated using commercial USY sample (Sample #0) as reference, assuming 100% crystallinity.

Figure ESI-2. FTIR spectra recorded for USY samples dealuminated with aqueous HNO_3 solutions with different acid concentrations. Inset: detail of the 960 cm⁻¹ vibration attributed to Si-OH stretching.

Figure ESI-3. Ammonia TPD profiles recorded for USY parent material and Sn-Al-USY samples prepared by different grafting methods.

Thermal grafting

Catalytic grafting

Figure ESI-4. Products yields profiles achieved in the treatment of methanolic solutions of glucose in presence of Al-Sn-USY prepared by different grafting methods. Reaction conditions: temperature: 170°C; starting glucose concentration: 48 g/L; catalyst loading: 1.0 g; total reaction volume: 100 mL.

Figure ESI-5. Products yields profiles achieved in the treatment of methanolic solutions of glucose in presence of ion exchanged Al-Sn-USY with magnesium, calcium and sodium chlorides. Reaction conditions: temperature: 170°C; starting glucose concentration: 48 g/L; catalyst loading: 1.0 g; total reaction volume: 100 mL.

Figure ESI-6. Kinetic profiles achieved in the treatment of methanolic solutions of glucose in presence of sample #0 and K-exchanged sample #0. Reaction conditions: temperature: 170°C; starting glucose concentration: 48 g/L; catalyst loading: 1.0 g; total reaction volume: 100 mL.

Figure ESI-7. Thermogravimetric analysis (TGA – left axis & DTA – right axis) performed on a fresh (black line) and a used (red line) sample of K-exchanged Sn-Al-USY material (sample #7).

Scheme ESI-1. Reaction pathways promoted by different acid sites in presence of Sn-Al-USY zeolites in methanol media.

Table ESI-1. Physicochemical properties achieved for ion exchanged Sn-Al-USY zeolites with different alkaline and alkaline earth metal chlorides.^a

#	MeCl _x ^b	Al ۲ (wt%)	Sn ^d (wt%)	Me ^e (wt%)	Me/Al ^f (at.)	H ^{+ g} (meq/g)	Td _{NH3} ^h (≌C)	B:L ⁱ (mol)
7		0.52	2.41			0.86	301.5	0.151
7-Mg	MgCl ₂	0.52	2.62	0.06	0.13	0.91	281.7	0.063
7-Ca	$CaCl_2$	0.51	2.56	0.19	0.25	0.64	275.2	0.071
7-Na	NaCl	0.50	2.55	0.18	0.42	0.50	259.8	0.032
7-K	KCI	0.50	2.37	0.29	0.40	0.40	262.5	0.034

^a All metal contents were measured by means of ICP-OES; ^b metal chloride used for ion exchange; ^c aluminium content; ^d tin content; ^e alkaline/alkaline earth metal content; ^f alkaline/alkaline earth metal to aluminium atom ratio; ^g acid capacity determined by NH₃ TPD; ^h average ammonia desorption temperature; ^h Brønsted to Lewis acid molar ratio.

#	Y _{MGP} ^b (mol%)	Y _{HMF} ^c (mol%)	Y _{MLEV} ^d (mol%)	Y _{MG} ^e (mol%)	Y _{GADMA} f (mol%)	Y _{MVG} ^g (mol%)	Y _{MLAC} ^h (mol%)	CB ^h (mol%)
7	0.0	0.1	41.7	2.7	2.2	3.1	10.7	49.3
7-Mg	0.0	0.1	10.5	1.0	4.2	8.8	31.3	50.8
7-Ca	0.0	0.0	5.4	0.6	6.2	10.3	37.3	50.9
7-Na	0.0	0.6	1.4	1.4	7.5	11.2	44.8	57.0
7-K	0.0	0.3	11.1	3.2	8.9	9.2	43.2	63.0

Table ESI-2. Products distributions and carbon balances achieved in the treatment of glucose with ion exchanged Sn-Al-USY zeolites with different alkaline and alkaline earth metal chlorides

^a Reaction conditions: temperature: 170°C; starting glucose concentration: 48 g/L; catalyst loading: 1.0 g; total reaction volume: 100 mL. Total conversion was achieved for all the catalysts at 6h. All the product yields have been expressed as mol %; ^b Yield to α-methyl glucopyanoside; ^c Yield to 3-hydroxymethyl furfural; ^d Yield to methyl levulinate; ^e Yield to methyl glycolate; ^f Yield to glycolaldehyde dimethyl acetal; ^g Yield to methyl vinyl glycolate; ^h Yield to methyl lactate; ⁱ Carbon Balance calculated as the ratio of carbon in glucose quantified as products.