Niobium oxide prepared through a novel supercritical-CO₂-assisted method as highly

active heterogeneous catalyst for the synthesis of azoxybenzene from aniline

Yehan Tao, Bhawan Singh, Vanshika Jindal, Zhenchen Tang, Paolo P. Pescarmona*

Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

* Corresponding author: p.p.pescarmona@rug.nl; Tel: +31-503636521

Supporting information

Fig. S2 (a) Temperature of the reaction mixture as a function of time. (b) Conversion of 20 mmol aniline over Nb₂O₅-scCO₂ catalyst. Reaction conditions: 20 mmol aniline, 28 mmol 30 wt % H₂O₂, 10 mmol anisole, 10 mL ethanol, 10 mg catalyst, room temperature, 45 min.

Fig. S3 Conversion of 50 mmol aniline with (a) Nb₂O₅-scCO₂ and (b) Nb₂O₅-Ref catalyst as a function of time. Reaction conditions: 50 mmol aniline, 70 mmol 30 wt% H₂O₂, 25 mmol anisole, 25 mL ethanol, 10 mg selected catalyst, room temperature. Note: the change in colour can be qualitatively correlated to the formation of the reaction products [nitrosobenzene (light yellow), nitrobenzene (light yellow), azobenzene (red) and azoxybenzene (light brown)].

Fig. S4 XRD pattern of Nb₂O₅-800°C.

Figure S5 TEM images of Nb₂O₅-scCO₂.

Figure S6 SEM images of (a), (b) Nb_2O_5 -scCO₂ and (c), (d) Nb_2O_5 -Ref.

Fig. S7 Effect of H₂O₂ concentration on aniline conversion. Reaction conditions: 20 mmol aniline, 28 mmol (a) 10 wt%, (b) 20 wt%, (c) 30 wt%, (d) 50 wt% H₂O₂, 10 mmol anisole, 10 mL ethanol, 10 mg Nb₂O₅-scCO₂ catalyst, room temperature, 25 min. Note: the change in colour can be qualitatively correlated to the formation of the reaction products [nitrosobenzene (light yellow), nitrobenzene (light yellow), azobenzene (red) and azoxybenzene (light brown)].

Fig. S8 Effect of solvents on aniline conversion. Reaction conditions: 20 mmol aniline, 28 mmol 30 wt% H₂O₂, 10 mmol anisole, 10 mL solvent, 10 mg Nb₂O₅-scCO₂ catalyst, room temperature, 45 min.

Fig. S9 Reusability test of the Nb₂O₅-scCO₂ catalyst in oxidative coupling of aniline with H₂O₂. Reaction conditions: 20 mmol aniline, 28 mmol 30 wt% H₂O₂, 10 mmol anisole, 10 mL ethanol, 10 mg Nb₂O₅-scCO₂ catalyst, room temperature, 45 min.

Ref.	Catalyst	Catalyst loading, (R _{c/s}) ^a	Aniline: H ₂ O ₂	т (°С)	Reaction time (h)	Solvent	Conv. (%)	Yield (%)	Prod (h ⁻¹) ^b
This	Nb ₂ O ₅	0.005	1:1.4	RT	0.75	Ethanol	86	79	209
1	TiO ₂	0.86	1:3	50	0.5	Methanol	> 99	98	2.3
2	TiO ₂	0.013	1:1.7	60	0.75	-	98	96	95
2	P25	0.013	1:1.7	60	0.75	-	52	51	50
3	TiO ₂ -montmorillonite	0.02	1:1	RT	8	Methanol	50	49	3.1
4	TS-1	0.05	1:0.8	70	3	t-Butanol	N.M.	20	1.2
5	TS-1	0.21	1:1	Reflux	6	Acetone	N.M.	87	0.7
6	Ti-MCM-48	0.02	1:3	50	3	Methanol	N.M.	90	2.0
7	Ti-Beta	0.11	1:0.2	70	3	Acetonitrile	N.M.	8	0.2
8	Co-Si-oxide	0.01	1:2	80	6	Acetonitrile	> 99	> 99	16
9	CuCr ₂ O ₄	0.1	1:5	70	10	1,4-Dioxane	78	72	0.7
10	Ag-WO ₃	0.1	1:3	RT	24	Acetonitrile	87	79	0.3
11	Cu-CeO ₂	0.1	1:3	50	6	Acetonitrile	95	87	1.4
12	NbOOH-FeOOH	0.1	1:11	RT	24	Propanol	> 99	80	0.3
13	Nb-Zn-Al-oxide ^c	0.1	1:2	RT	48	Methanol	95	90	0.2

Table S1 Literature overview of heterogeneous catalysts for the oxidative coupling of aniline with H₂O₂.

^a R_{c/s} is defined as the weight ratio between catalyst and aniline. ^b The productivity is defined as the grams of product generated per gram of catalyst in 1 hour. ^c Photocatalyst, operating under UV irradiation. N.M.: not mentioned.

Chemical	Purity (%)	Supplier		
NbCl ₅	99	Sigma-Aldrich Co.		
Ethanol	100	J.T.Baker		
Nb ₂ O ₅ -Comm	-	Sigma-Aldrich Co.		
TiO ₂ -P25	-	Sigma-Aldrich Co.		
WO ₃ -Comm	-	Sigma-Aldrich Co.		
Aniline	99	Sigma-Aldrich Co.		
o-toluidine	99	TCI Europe N.V.		
m-toluidine	98	TCI Europe N.V.		
p-toluidine	99.6	Sigma-Aldrich Co.		
2-ethylaniline	98	Sigma-Aldrich Co.		
3-ethylaniline	98	Sigma-Aldrich Co.		
4-ethylaniline	98	TCI Europe N.V.		
p-anisidine	99	Sigma-Aldrich Co.		
benzylamine	99	Sigma-Aldrich Co.		
Anisole	99	Acros Organics		
H ₂ O ₂	30 wt% in H_2O	Sigma-Aldrich Co.		
H ₂ O ₂	50 wt% in H_2O	Sigma-Aldrich Co.		
1,4-dioxane	99	Emplura		
Acetone	100	Biosolve		
Acetonitrile	99.8	Sigma-Aldrich Co.		
2-Butanol	99.5	Sigma-Aldrich Co.		
Isopropanol	99.7	Sigma-Aldrich Co.		
Methanol	100	Biosolve		
2,2,6,6-Tetramethyl-1-				
piperidinyloxy	98	Sigma-Aldrich Co.		
(TEMPO)				

Table S2 List of chemicals used in this work, and their purity.

Step 1: Formation of radicals

Step 2: Reaction pathway from aniline to azoxybenzene.

Scheme S1 Proposed reaction pathway for the oxidative coupling of aniline with H_2O_2 to azoxybenzene over the Nb_2O_5 -sc CO_2 catalyst.

Reference

1. H. Tumma, N. Nagaraju, K. V. Reddy, Applied Catalysis A: General, 2009, 353 (1), 54-60.

- 2.L. Yang, G. Shi, X. Ke, R. Shen, L. Zhang, CrystEngComm, 2014, 16 (9), 1620-1624.
- 3. N. Jagtap, V. Ramaswamy, Applied clay science, 2006, 33 (2), 89-98.
- 4. S. Gontier, A. Tuel, Applied Catalysis A: General, 1994, 118 (2), 173-186.
- 5. H. Sonawane, A. V. Pol, P. P. Moghe, S. S. Biswas, A. Sudalai, *Journal of the Chemical Society, Chemical Communications*, 1994, **10**, 1215-1216.
- 6. D. R. Das, A. K. Talukdar, ChemistrySelect, 2017, 2 (28), 8983-8989.
- 7. S. Gontier, A. Tuel, Journal of Catalysis, 1995, 157 (1), 124-132.
- 8. C.-F. Chang, S.-T. Liu, Journal of Molecular Catalysis A: Chemical, 2009, 299 (1-2), 121-126.
- 9. S. S. Acharyya, S. Ghosh, R. Bal, ACS Sustainable Chemistry & Engineering, 2014, 2 (4), 584-589.
- 10. S. Ghosh, S. S. Acharyya, T. Sasaki, R. Bal, Green Chemistry, 2015, 17 (3), 1867-1876.
- 11. A. Shukla, R. K. Singha, L. S. Konathala, T. Sasaki, R. Bal, *RSC Advances*, 2016, **6** (27), 22812-22820.
- 12. A. L. Lima, D. C. Batalha, H. V. Fajardo, J. L. Rodrigues, M. C. Pereira, A. C. Silva, *Catalysis Today*, 2018, doi.org/10.1016/j.cattod.2018.10.035.
- 13. G. S. de Carvalho, L. H. Chagas, C. G. Fonseca, P. P. De Castro, A. C. Sant, A. A. Leitão, G. W. Amarante, *New Journal of Chemistry*, 2019, **43**, 5863.