Surface modification of porous g-C₃N₄ materials by waste product for enhanced photocatalytic performance under visible light

Tengyao Jiang^a, Sijia Liu^a, Yangyan Gao^{b,c}, Asif H. Rony^b, Maohong Fan^b, Gang Tan^{a,*}

^aDepartment of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA

^bDepartment of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA

^cDepartment of Environmental Engineering, Shanxi University, Taiyuan, 030006, China

*Corresponding author. Telephone: +1 307 766 2390; fax: +1 307 766 2221.

E-mail address: gtan@uwyo.edu (G. Tan)

Fig. S1 Optical photo and schematic diagram of photocatalytic reaction system

Fig. S2 optical photo of MCN samples

Fig S3 Optical photo of solar pyrolysis experimental set-up and quartz sample chamber

Fig. S4 NMR spectra of the crude bio-oil and the liquid solution after solvothermal reaction

Fig. S5 NMR spectra of the residual solution after solvothermal reaction without GCN material

Fig. S6 Solid state ¹³C and ¹H NMR spectra of GCN and MCN samples.

Fig. S7 TG analysis of bio-oil liquids and g-C₃N₄ sample

Fig. S8 Optical photo of MCN samples

Fig. S9 HOMO and LUMO distribution of GCN and MCN samples

Retention time (min)	Compound	Formula
2.40	1,2-Ethanediol	C ₂ H ₆ O ₂
3.06	1,3-Dioxolane	$C_3H_6O_2$
3.69	2-Pentanone, 4-hydroxy-4-methyl-	$C_{6}H_{12}O_{2}$
3.78	Ethanol, 2-(1-methylethoxy)-	C ₅ H ₁₂ O ₂
5.23	Hydroperoxide, heptyl	$C_{7}H_{16}O_{2}$
7.73	1,2-Cyclopentanedione, 3-methyl-	$C_6H_8O_2$
8.21	Phloroglucitol	$C_{6}H_{12}O_{3}$
9.84	Cyclopropyl carbinol	C ₄ H ₈ O
18.15	1,2,3,4-Cyclopentanetetrol, $(1\alpha,2\beta,3\beta,4\alpha)$ -	$C_5H_{10}O_4$
20.83	D-Allose	$C_6H_{12}O_6$
26.35	Coniferyl aldehyde	$C_{10}H_{10}O_{3}$
30.77	Cyclopenta[c]furo[3',2':4,5]furo[2,3-h][1]benzopyran-11(1H)- one, 2,3,6a,9a-tetrahydro-1,3-dihydroxy-4-methoxy-	$C_{17}H_{14}O_{7}$
34.55	n-Capric acid isopropyl ester	$C_{13}H_{26}O_{2}$
37.35	2-Furanmethanol, 5-ethenyltetrahydro- α , α ,5-trimethyl-, cis-	$C_{10}H_{18}O_2$
38.65	Dehydroabietic acid	$C_{20}H_{28}O_2$
40.63	1-Octanol, 2-butyl-	$C_{12}H_{26}O$
45.79	Benzenepropanol, 4-hydroxy-3-methoxy-	$C_{10}H_{14}O_{3}$

Table S1 Major compounds in bio-oil identified from NIST library

Table S2 Hydrogen evolution rate data

Sample	C(H ₂)/µmol g ⁻¹ h ⁻¹				
	1	2	3	Average	
GCN	515	443	491	483	
ST-120	1366	1350	1164	1293	
ST-180	1538	1896	1529	1654	

Table S3 Control experiments for hydrogen evolution reaction

$C(\mathbf{H})/\mathbf{um}$ of $g-1$ b-1	Conditions			
C(H ₂)/µmorg • n •	Catalyst sample	Light source	Pd co-catalyst	
28	<u>ل</u>	P	P	
35	R	þ	P	
67	R	P	þ	

120 °C and 180 °C

Scheme S1 Possible reactions between the active species in the bio-oil and GCN material